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Purpose: As increasing amounts and types of speech data
become accessible, health care and technology industries
increasingly demand quantitative insight into speech content.
The potential for speech data to provide insight into
cognitive, affective, and psychological health states and
behavior crucially depends on the ability to integrate
speech data into the scientific process. Current engineering
methods for acquiring, analyzing, and modeling speech data
present the opportunity to integrate speech data into the
scientific process. Additionally, machine learning systems
recognize patterns in data that can facilitate hypothesis
generation, data analysis, and statistical modeling. The goals
of the present article are (a) to review developments across
these domains that have allowed real-time magnetic
resonance imaging to shed light on aspects of atypical
speech articulation; (b) in a parallel vein, to discuss how
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advancements in signal processing have allowed for an
improved understanding of communication markers
associated with autism spectrum disorder; and (c) to highlight
the clinical significance and implications of the application
of these technological advancements to each of these areas.
Conclusion: The collaboration of engineers, speech
scientists, and clinicians has resulted in (a) the development
of biologically inspired technology that has been proven
useful for both small- and large-scale analyses, (b) a
deepened practical and theoretical understanding of both
typical and impaired speech production, and (c) the
establishment and enhancement of diagnostic and
therapeutic tools, all having far-reaching, interdisciplinary
significance.
Supplemental Material: https://doi.org/10.23641/
asha.7740191
As increasing amounts and types of speech data
become accessible, health care and industry increas-
ingly demand quantitative insight into speech

content. The potential for speech data to provide insight
into behavior, cognitive, and other psychological states
crucially depends on the ability to integrate these data
into the scientific process. Current engineering methods
for acquiring, analyzing, and modeling speech data present
the opportunity to integrate speech data into the scientific
process (see Figure 1). For instance, novel sensors enable
accurate measurement of signals in controlled experi-
ments, in the clinic, and at home. Additionally, machine
learning systems recognize patterns in data that can fa-
cilitate hypothesis generation, data analysis, and statistical
modeling. Accordingly, these advancements in hardware
development, software development, and signal processing
have led to an improved understanding of a variety of com-
munication disorders. The goals of the present article are
(a) to review developments across these domains that have
allowed real-time magnetic resonance imaging (rtMRI)
to shed light on aspects of atypical speech articulation;
(b) in a parallel vein, to discuss how advancements in
signal processing have allowed for the identification of
communication markers associated with autism spec-
trum disorder (ASD) using quantitative approaches; and
(c) to highlight the clinical significance and implications
of these technological advancements in each of these
areas.
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Figure 1. The role for engineering methods in the various stages of
the scientific process.

SIG 19 Speech Science
The Development of Engineering Techniques
and Tools for the Acquisition and Analysis
of Speech Production Data Using Magnetic
Resonance Imaging

Through the years, engineering has played a critical
role in the development of techniques and tools allowing
for the investigation of typical and atypical speech produc-
tion using magnetic resonance imaging (MRI). Static struc-
tural MRI and cine MRI, used to detect and differentiate
levels of hydrogen concentration in the soft tissues of the
human body, have been used to investigate the state of the
vocal tract at individual points in time during speech pro-
duction (e.g., Narayanan, Alwan, & Haker, 1995; Stone
et al., 2001; Story, Titze, & Hoffman, 1996; Takemoto,
Honda, Masaki, Shimada, & Fujimoto, 2006). MRI is a
particularly useful tool for the investigation of speech pro-
duction, given that (a) it is minimally invasive, requiring
the participant only to read phrases from a projected screen
or speak spontaneously in response to a spoken or textual
cue, (often) lying supine in the scanner bore, without any
sensors being adhered to their articulators; (b) it subjects
the participant to no ionizing radiation; and (c) it allows for
visualization of the entire vocal tract, including the velum,
pharynx, and larynx, in various planes (e.g., midsagittal,
coronal). Static MRI provides rich spatial information
about the articulators at only one point in time and so is con-
ducive to studying only sustained articulations, such as
vowels, liquids, and fricatives (Narayanan et al., 1995; Story
et al., 1996). Based on the same technology, cine MRI at-
tempts to reconstruct the dynamics of articulation by col-
lecting static configurations of the vocal tract over several
2 Perspectives of the ASHA Special Interest Groups • 1–10
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productions of a single item, sequencing them to render an
approximation of real-time production (e.g., Stone et al.,
2001; Takemoto et al., 2006).

Over the past two decades, rtMRI, elaborating tradi-
tional medical MRI, has played a critical role in studying a
variety of biological movement patterns, including cardiac
motion (Nayak & Hu, 2005) and joint kinematics (Zhang,
Gersdorff, & Frahm, 2011). Engineers and speech scientists
have teamed up to apply rtMRI technology to the study of
speech production (Bresch, Kim, Nayak, Byrd, & Narayanan,
2008; Y. Kim, Narayanan, & Nayak, 2009; Narayanan,
Nayak, Lee, Sethy, & Byrd, 2004). In addition to imaging
advances, this includes, for example, the development of
noise cancellation technology (Bresch, Nielsen, Nayak, &
Narayanan, 2006; Vaz, Ramanarayanan, & Narayanan,
2018), which has been essential in applying rtMRI to the
study of speech production, given the intensity of scanner
noise and the importance of acquiring reliable acoustic data
for analysis alongside articulatory data. Likewise, automatic
tongue and vocal tract contour tracking tools that rely on
identification of air-tissue boundaries (Bresch & Narayanan,
2009; J. Kim, Kumar, Lee, & Narayanan, 2014; Proctor,
Bone, Katsamanis, & Narayanan, 2010) have played a criti-
cal role in both quantitative and qualitative analyses of
speech production patterns in rtMRI data. In contrast to
static MRI and cine MRI, rtMRI does not require partici-
pants to produce several repetitions of each token but rather
allows for fast acquisition rates (e.g., 83 frames per second
or higher; Lingala et al., 2017) on single tokens. rtMRI for
speech has been shown to effectively shed light on a wide
variety of phenomena in both typical and disordered speech
production that would not be possible to investigate using
tools providing more limited spatiotemporal information
about vocal tract shaping (Carignan, Shosted, Fu, Liang, &
Sutton, 2015; Feng et al., 2018; Perry, Kuehn, Sutton, &
Fang, 2017).

Applications of rtMRI to the Study of Typical
Speech Production

rtMRI has been used to investigate typical speech
production, focusing on articulatory behavior that under-
lies speech sounds produced in isolation (Toutios et al., 2016),
in systematically controlled phonetic environments (Byrd,
Tobin, Bresch, & Narayanan, 2009; Lammert, Goldstein,
Ramanarayanan, & Narayanan, 2015; S. Lee, Potamianos,
& Narayanan, 2014; Y. Lee, Goldstein, & Narayanan,
2015), and in naturalistic, running speech (Narayanan et al.,
2014; Proctor, Lo, & Narayanan, 2015).

Toutios et al. (2016) illustrate an organized collection
of rtMRI data available for public use that comprises data
from four distinguished phoneticians producing each sound
of the International Phonetic Alphabet (IPA). All vowel
sounds, elicited in isolation, and all sounds in the Pulmonic
Consonants, Nonpulmonic Consonants, and Other Sym-
bols sections of the IPA chart, elicited in the context of
low back vowel /a/ (i.e., [aCa]), are included. Additionally,
monosyllabic words containing all vowels and diphthongs
Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



SIG 19 Speech Science
of American English of the form [hVd] are included, as well
as four phonetically rich sentences and the Rainbow and
Grandfather passages. Figure 2 displays the clickable IPA
symbols, words, sentences, and passages, each linking to its
respective production clip for each of the four speakers.
Pronunciation training, as occurs in phonetics instruction,
second language acquisition, and therapeutic intervention
for speech disorders, typically relies on close listening and
participants’ visual observation of the instructor’s extraoral
articulators, with less visual information regarding lingual
movement being available to the learner. The rtMRI data,
becoming increasingly available, have the potential to
serve as a rich complement to existing pronunciation
training tools, allowing learners to observe target movement
Figure 2. Snapshot from the web resource, illustrating the stimulus set. O
MRI videos of their productions. Reprinted from “Illustrating the Productio
Time Magnetic Resonance Imaging” by A. Toutios et al., 2016, INTERSPE
permission.

Downloaded from: https://pubs.asha.org 99.165.124.219 on 41/27/2019, 
patterns of articulators that are typically hidden within the
vocal tract.
Applications of rtMRI to the Study of Disordered
Speech Production

In addition to its utility in characterizing typical speech
articulation, rtMRI has been used to investigate speech
produced by individuals with speech impairments secondary
to a variety of conditions, including aglossia (McMicken
et al., 2017; Toutios, Byrd, Goldstein, & Narayanan, 2017),
oral cancer (Hagedorn et al., 2014; Hagedorn, Kim, et al.,
2017; Lander-Portnoy, Goldstein, & Narayanan, 2017), and
n the web resource, symbols, words and phrases link to real-time
n of the International Phonetic Alphabet Sounds using Fast Real-
ECH, p. 2428. Copyright 2016 by INTERSPEECH. Reprinted with
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Figure 3. Glossectomy patient (a) produces /d/ by creating both
labial and coronal constrictions; typical speaker (b) produces /d/ by
creating only a coronal constriction. Note the reduced lingual mass in
the glossectomy patient as compared with the typical speaker.

SIG 19 Speech Science
acquired apraxia of speech (AoS; Hagedorn, Proctor, et al.,
2017).

rtMRI reveals that speakers with congenital aglossia,
a syndrome in which a person is born without a (complete)
tongue, and speakers with oral cancer who have under-
gone glossectomy, in which part of the tongue is surgically
resected, articulatorily compensate to produce sounds that
they are not able to produce in the same way as individuals
having typical speech. Specifically, McMicken et al. (2017)
found that a speaker with congenital aglossia, who lacked
a tongue tip, produced target coronal constrictions using
bilabial closure. Upon recognizing that this speaker’s com-
pensatory (labial) productions for /t/ and /d/ were perceptu-
ally similar to targets /t/ and /d/, despite being produced
bilabially, researchers further investigated the underlying
cause of the perceptual distinction between the speaker’s
target bilabials and target coronals that were also produced
bilabially. Work by Toutios et al. (2017) leveraged the global
view of the vocal tract that rtMRI provides to demonstrate
that the speaker’s target coronals (produced bilabially) dif-
fered from target bilabial stops in that they were produced
with an elongated bilabial constriction and widening of the
pharynx (Supplemental Material S1). An acoustic simula-
tion experiment carried out by the authors provided evidence
that this specific combination of compensatory strategies
was indeed required to produce the perceptual differences
between the speaker’s production of target bilabials and
target coronals.

In a similar vein, work by Hagedorn et al. (2014) and
Hagedorn, Kim, et al. (2017) demonstrated that individuals
with oral cancer who underwent resection of the oral tongue
can, in some circumstances, compensate for consonant
targets using articulators other than those typically used.
Specifically, rtMRI revealed that one individual who under-
went resection of the oral tongue produced target coronal
stops as labiodental stops, while producing target coronal fric-
atives using the tongue dorsum (Supplemental Material S2).
Investigation of the speech produced by an individual who
underwent resection of the oral and base of tongue re-
vealed that target coronal stops were produced using simul-
taneously the tongue tip to create incomplete closure against
the alveolar ridge and the lips to create complete occlusion
(Supplemental Material S3). Target coronal fricatives were
compensated for by creating both alveolar (using the residual
tongue tip) and labial constrictions (see Figures 3a and 3b).
rtMRI also shed light on vowel production in postglossect-
omy speech, revealing not only that vertical jaw position
and lingual constriction degree are more highly correlated
in patients than in typical speakers but also that larger dif-
ferences in constriction degree are achieved, per unit jaw
height, in patients than in typical speakers, suggesting that
patients use modulation of jaw height in order to compen-
sate for reduced lingual mobility.

In addition to its application for the study of speech
impairment consequent to atypical articulatory structures,
as in cases of aglossia or glossectomy, rtMRI has also been
used to shed light on the nature of speech disorders arising
from breakdown at the planning and programming levels
4 Perspectives of the ASHA Special Interest Groups • 1–10
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of speech motor control, as occurs in acquired AoS. Using
rtMRI, Hagedorn, Proctor, et al. (2017) characterized co-
vert articulation in AoS, whereby two articulatory movements
are coproduced—one corresponding to the target sound
and the other as an erroneous articulatory movement that
is not typical for the target sound. These covert, and often
auditorily undetectable, “intrusion” errors were shown to
occur not only in word-pair repetition tasks (e.g., “cop-top-
cop-top-cop-top…”) but also in repeated sentences (e.g.,
repeating “I can type bow know five times.”; Supplemental
Material S4). Further, covert multiple initiation gestures
(i.e., instances of unphonated articulatory groping) were
shown to occur more frequently in segments requiring the
coordination of multiple vocal tract articulators (e.g., the
lips and tongue as for /w/) than in those requiring a single
vocal tract gesture (e.g., the lips as for /b/; see Figures 4a–4c).

The capability of rtMRI to shed light on disordered
speech has translational significance, in that the findings of
these studies can be used to refine therapeutic intervention
techniques. The findings of McMicken et al. (2017), Toutios
et al. (2017), Hagedorn et al. (2014), and Hagedorn, Kim,
et al. (2017) provide insight into spontaneous compensation
strategies (i.e., those produced on one’s own, without the
direction of a clinician) that can give rise to typical or near-
typical target acoustics in individuals with congenital aglos-
sia and in those who have undergone lingual resection.
These strategies could be used by clinicians in order to fine-
tune therapy programs for those who do not (sufficiently)
compensate spontaneously, requiring therapy to remediate
articulation disorders caused by structural impairments.
The findings of Hagedorn, Proctor, et al. (2017) suggest
that therapeutic intervention for individuals with AoS might
be fine-tuned to focus on the production of complex seg-
ments that require the coordination of multiple supralaryn-
geal articulators. Many of these preliminary findings using
rtMRI to investigate disordered speech emphasize that cli-
nicians ought to be aware that the breakdowns, deficiencies,
and/or atypicalities in articulatory coordination can mani-
fest silently—that is, with no perceptually salient acoustic
trace—or as coproduction errors, for example, with two vo-
cal tract movements (one target and one erroneous) being
Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 
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Figure 4. Speaker with apraxia of speech produces target /t/ (a), target /k/ (b), and intrusion error (c), in which coronal
and dorsal gestures for /t/ and /k/ are coproduced.

SIG 19 Speech Science
produced simultaneously, rather than an erroneous move-
ment completely replacing the target movement.

Although rtMRI has successfully been used to shed
light on several aspects of both typical and atypical speech
production, its implementation comes not without challenges.
For example, the application of rtMRI to the study of speech
in certain clinical populations is oftentimes difficult due to
constraints of patient availability and willingness to partici-
pate. Apart from these limitations, the presence of metal
implants (e.g., reconstructive rods or plates placed during
surgery) or pacemakers may preclude participants from be-
ing eligible for participation in studies relying on magnetic
fields due to risk of electromagnetic interference, leading to
artifacts that render quality of the data suboptimal and,
more importantly, physical risk to the participant. More-
over, individuals with claustrophobia who might otherwise
be willing to participate in such studies may experience
difficulty remaining in a confined space (such as an MRI
scanner bore) for the time that such studies often require.
Similarly, both pediatric and adult participants, and partic-
ularly those in the patient population, may experience diffi-
culty remaining stationary yet alert for the duration of the
experiment, due to fatigue.

In summary, rtMRI and the novel analytical ap-
proaches described herein have aided not only in character-
izing disordered speech in a manner not possible using other
speech production research tools but also in informing speech
scientists and clinicians of ways in which fine-tuning speech
intervention programs may be beneficial to patients’
speech outcomes. Engineering techniques, propelled by ad-
vances in signal processing and machine learning, are also
enabling new possibilities both in helping illuminate the
scientific underpinnings of various mental and behavioral
health conditions and in supporting the creation of novel
screening and diagnostic measures. The next section high-
lights some of these possibilities using a case study of ASD.
The Role of Speech Engineering Techniques
and Tools for Autism Research and
Its Clinical Applications

ASD is a neurodevelopmental disorder typically char-
acterized by difficulties with social communication, repetitive
Downloaded from: https://pubs.asha.org 99.165.124.219 on 41/27/2019, 
behaviors, and restricted interests. ASD is among the most
highly heritable psychiatric disorders (Bargmann & Gilliam,
2013; Tick, Bolton, Happé, Rutter, & Rijsdijk, 2016), but
the pattern of inheritance is complex, and the complex etiol-
ogy remains incompletely understood, with only 10%–20%
of clinical cases having a known genetic cause (Geschwind,
2011). A consequence of this uncertain etiology is that the
diagnosis of ASD is based not on disease pathology but
rather on expert assessment of child behavior and cognition.

The assessment of behavior is challenging due to vari-
ability in behavior and subjectivity in its interpretation.
Variability in child behavior reflects a diverse set of factors,
including comorbid psychiatric disorders, instantaneous
physiological state, attention, emotion, and motivation. In
addition to this variability in the generation of behavior,
the observer interprets the behavior differently depending
on the nature of the interaction: A physician screening the
child for developmental disorders in a health care setting
may assign clinical codes to the behavior, whereas a parent
playing with the child may attribute to the behavior such
qualities as engagement, enjoyment, and responsiveness.

Behavioral signal processing (BSP) is a framework
for sensing the signals that arise from behavior, analyzing
behavior from these signals, and modeling the behavioral con-
structs that observers abstract from the signals (Narayanan
& Georgiou, 2013; see Figure 5). For instance, a BSP sys-
tem may use a microphone and an electrocardiograph to
sense a child’s speech and heart rate during a dyadic inter-
action with a clinical psychologist, recognize speech into-
nation and autonomic arousal, and model the behavioral
construct of social anxiety (Bone, Mertens, et al., 2017).
The purpose of a BSP model in the domain of ASD is not
to replace but rather to complement expert assessment of
behavior and cognition (Bone et al., 2016; Bone, Goodwin,
et al., 2015; Bone, Mertens, et al., 2017). This section de-
scribes state-of-the-art engineering tools for enhancing the
health care of individuals with ASD and accelerating scien-
tific discovery in the disorder.
Speech Prosody in ASD
Speech processing methods have led to scientific dis-

covery in ASD in the area of speech prosody. Prosody cap-
tures emphasis, emotion, and grammatical distinctions, such
Hagedorn et al.: Engineering In Speech Science 5
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Figure 5. Behavioral signal processing. Human behavior generates signals that are transduced by sensors such as a microphone or an
electrocardiograph. Features (e.g., pitch) are extracted from the behavioral signals. Statistical models and machine learning predict behavioral
constructs (e.g., social anxiety, autism severity) from the features.

SIG 19 Speech Science
as between statements, questions, and commands. Prosody
is oftentimes disrupted in ASD (Hubbard & Trauner, 2007;
McCann & Peppé, 2003); children with ASD frequently
exhibit “monotonic” speech, variable volume, atypical voice
quality, and slow rate of speech. Engineers have begun to
use speech processing to identify the basis of this perception
in the speech signal.

ASD may be reflected in pitch patterns. Children with
more severe ASD tend to have a greater fall in pitch at the
end of a speaking turn than children with less severe ASD
(Bone, Lee, Black, et al., 2014). In American English, falling
pitch generally indicates that the utterance is a statement,
but in the speech of children with ASD, listeners may per-
ceive a persistently falling pitch slope as an indicator of
monotone speech.

Aperiodicity in the speech signal, reflected in the
features of jitter and shimmer, has been linked to percep-
tions of breathiness, hoarseness, and roughness (McAllister,
Sundberg, & Hibi, 1998). ASD severity can be indexed using
these measures, with high values and high variability of jitter
being associated with more severe ASD (Bone, Lee, Black,
et al., 2014). Signal periodicity can be measured by cepstral
peak prominence and harmonics-to-noise ratio. These fea-
tures have been linked to perceptions of vocal breathiness
(Hillenbrand, Cleveland, & Erickson, 1994) and harshness
(Halberstam, 2004). Children with ASD tend to exhibit low
and variable harmonics-to-noise ratio (Bone et al., 2014).
Given that intrarater reliability of voice quality is low
(Gelfer, 1988; Kreiman, Gerratt, Kempster, Erman, & Berke,
1993), the identification of features such as jitter, shimmer,
cepstral peak prominence, and harmonics-to-noise ratio
that quantitatively and objectively characterize voice qual-
ity takes on particular importance.

The engineering tools of speech processing surveyed
above provide the means to analyze facets of prosody such
as pitch, volume, rate, and voice quality. Although these
speech features are objective descriptors of prosody, speech
features alone do not characterize clinically and ecologically
important behavioral constructs such as “awkwardness”
and “expressivity.” The promise of applying BSP to charac-
terize prosody in ASD lies in the potential for discovering
and modeling the signal properties that produce the percep-
tion of expressivity or awkwardness. BSP studies reveal that
speech rate, speech rhythm, and the way in which lexical
content and prosody are combined all contribute to the per-
ception of awkwardness, whereas the dynamics of pitch and
6 Perspectives of the ASHA Special Interest Groups • 1–10
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intensity contribute to the perception of expressivity (Bone,
Black, Ramakrishna, Grossman, & Narayanan, 2015).
Reliable modeling of how these factors interact to give rise
to speech that is perceived as awkward or expressive has
the potential to contribute to the formulation of therapeutic
biofeedback tools. These tools may help individuals with
ASD modulate the relevant aspects of the speech signal based
on targets derived from quantified measures to produce
speech that is perceived as more typical. Finally, BSP allows
for jointly modeling the interplay between the prosodic
patterns of the interlocutors such as a child and a clinician
interacting in a diagnostic setting to offer further insights
about coordination and interaction synchrony not easily
available by human observation (Bone, Lee, Black, et al.,
2014).
Nonverbal Communication in Autism
Speech communication is inherently multimodal.

Verbalizations are augmented by nonverbal cues, such as
facial expressions, head movements, and eye gazes. Engineer-
ing methods have also led to a scientific discovery in the
nonverbal components of communication as affected by
ASD. Such nonverbal components can be extremely subtle,
signaled by minor adjustments in body posture and small
deformations of the face. The complexity of the behavior
furnishes the challenge of identifying meaningful data modali-
ties and feature sets for quantifying nonverbal communica-
tion, as well as the challenge of determining the dimensions
along which nonverbal communication components differ
between typically developing children and children with
ASD.

Facial expression unfolds over time on different re-
gions of the face and is perceived highly subjectively. This
makes deficits in facial expression difficult to characterize
by visual inspection alone. To this end, studies have adopted
motion capture and video of the face to characterize facial
expression. Motion capture is a technology that uses a cam-
era array to track the position of facial markers in space
with high precision and accuracy (e.g., Fernández-Baena,
Susín, & Lligadas, 2012; Wagner, Malisz, & Kopp, 2014;
Windolf, Götzen, & Morlock, 2008; Supplemental Material
S5). Computational modeling of video data allows for quan-
tifying facial expressions and head movement by using the
two-dimensional video to reconstruct a three-dimensional
point mesh that represents the surface of the face (Jeni, Cohn,
Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 
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& Kanade, 2015). Studies using these methods show that
children with ASD produce facial expressions with different
spatiotemporal dynamics compared with typically develop-
ing children. Facial expression in ASD has reduced com-
plexity, primarily due to the nature of movement in the region
of the eyes (Guha, Yang, Grossman, & Narayanan, 2018).
Additionally, children with ASD tend to display asynchrony
and asymmetry between expressions of the left and right
face and asynchrony between upper and lower face movement
(Guha et al., 2015; Metallinou, Grossman, & Narayanan,
2013).

Differences in the nonverbal communication compo-
nent between children with ASD and typically developing
children depend on the social context in which the children
generate the behavior. For instance, computational analy-
sis of the head movement video shows that children with
ASD display greater rigid head motion than typically de-
veloping children when presented with social stimuli but
show no differences when presented with nonsocial stimuli
(Martin et al., 2018). Similarly, infants who are later diag-
nosed with ASD scan the face differently from typically
developing infants when the face is producing speech but
not when the face is not producing speech (Shic, Macari, &
Chawarska, 2014). This parallels findings that show that
children with ASD display atypical attention to biological
and social stimuli during development and show atypical
visual attention to faces compared with typically developing
children (Jones, Carr, & Klin, 2008; Klin, Jones, Schultz,
Volkmar, & Cohen, 2002). Children with ASD preferen-
tially attend to the mouth and body, whereas typically de-
veloping children prefer the eyes. Moreover, unlike typically
developing children, 2-year-olds with ASD do not preferen-
tially attend to biological motion over nonbiological mo-
tion (Klin, Lin, Gorrindo, Ramsay, & Jones, 2009). The
dependence of behavior in ASD on the social environment
of the child offers insight into the experience of children
with ASD that may underlie experience-dependent changes
in behavior. Atypical attention to biological and social stim-
uli limits the input available for learning nonverbal commu-
nication and may accompany the child failing to learn to
generate typical facial expressions.

Social Interaction in Autism
A core diagnostic criterion for ASD is persistent defi-

cits in social communication and social interaction. These
deficits affect both verbal and nonverbal components of
speech communication. Depending on the severity of the
disorder, this deficit ranges from poor integration of verbal
and nonverbal communication to abnormalities in eye con-
tact and body language or deficits in understanding and
use of gestures and to a total lack of facial expressions and
nonverbal communication (American Psychiatric Associa-
tion, 2013). Although clinicians excel at identifying and
rating communication deficiencies, automatically quanti-
fying aspects of social communication remains difficult
due to the holistic nature of social interaction. For this
reason, modeling social communication between children
Downloaded from: https://pubs.asha.org 99.165.124.219 on 41/27/2019, 
with ASD and peers, parents, and health care professionals
takes on importance as a promising application of BSP
and a unique opportunity to quantify a core deficit of the
disorder.

Psychologist–child interaction has been studied in a
health care setting in which the psychologist is diagnosing
the child with ASD (Bone, Lee, Black, et al., 2014) or
screening the child for developmental disorders (Gupta,
Bone, Lee, & Narayanan, 2016). As is typical of dyadic
interactions, the vocal behaviors of the child and psycholo-
gist are correlated with each other during these inter-
actions (Bone, Lee, Black, et al., 2014). Specifically, vocal
intensity and voice quality are correlated between the
child and the psychologist. Thus, psychologist behavior
also reflects the ASD severity of the child. The psycholo-
gist exhibits differences in variability in pitch contours,
variability in vocal intensity, and voice quality, depending
on the ASD severity of the child whom they are diagnos-
ing. In fact, Bone, Lee, Black, et al. (2014) find that three
of four features identified as significant predictors of ASD
severity were prosodic features of the psychologist’s speech,
whereas only one of four was a prosodic feature of the
child’s speech, indicating a profound difference in psycholo-
gist behavior depending on the child’s ASD severity.

The application of speech technologies such as auto-
matic voice activity detection (“When is speech pres-
ent?”) and diarization (“Who is speaking when?”) enables
the automated determination of speaking times in child–
psychologist interactions. This approach has revealed that
the percentage of the session that the psychologist spends
speaking tends to increase with increasing ASD severity
of the child (Bone, Lee, Black, et al., 2014). This likely
reflects some combination of low engagement and social
communication deficits in severe ASD.

The tools of speech processing surveyed above pro-
vide the means to analyze the covariance of prosody (pitch,
volume, rate, and voice quality) and turn-taking behavior
in social interactions. Although these speech features de-
scribe the social interaction as a whole, patterns of covari-
ance alone do not characterize the temporal dynamics of
the features and corresponding behavioral constructs such
as engagement or emotion. The promise of applying BSP
to characterize social interactions in ASD (or indeed in
conversations among typical speakers) lies in the potential
for modeling how interlocutors adaptively modulate the
temporal dynamics of prosody and turn-taking behaviors
over the course of an interaction and how these modula-
tions influence the behavioral constructs that observers
abstract from the behavior. The development of BSP
models has enabled the estimation of behavioral con-
structs such as a child’s level of engagement as it varies
over time (Gupta et al., 2016), affective synchrony between
child and parent (Hammal, Cohn, & Messinger, 2015), and
affective synchrony between child and psychologist (Bone,
Lee, Potamianos, & Narayanan, 2014). These models pro-
vide the potential to estimate abstract behavioral constructs
that provide reliable and clinically meaningful measures of
social interaction.
Hagedorn et al.: Engineering In Speech Science 7
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Conclusions
The collaboration of engineers, speech scientists, and

clinicians has resulted in (a) the development of biologically
inspired technology that has been proven useful for both
small- and large-scale analyses, (b) a deepened practical
and theoretical understanding of both typical and impaired
speech production, and (c) the establishment and enhance-
ment of diagnostic and therapeutic tools. Although important
successes have occurred for these outcomes, collaborative
work of this nature inevitably presents challenges. The tech-
nological advancements made through this collaborative
work may not always be adapted in the field, due to limita-
tions of the technology, itself, or the populations being in-
vestigated. Further, questionable validity of experimental
findings based on speech technology, due to the use of rela-
tively small sample sizes and the inherently high degree of
variability in speech production, particularly among clinical
populations, is of concern to engineers, speech scientists,
and clinicians alike. Similarly, the feasibility with which
developments in speech technology can be practically imple-
mented by clinicians and patients for diagnostic and thera-
peutic purposes must be seriously considered during creation
and refinement of these tools. Collaborative work to resolve
these issues has resulted in technologies allowing for high-speed,
automatic analysis of large data sets (e.g., Eyben, Wöllmer,
& Schuller, 2010) and relatively low-cost computer and
mobile device–based applications for clinical interventions
that can be practically implemented (e.g., Lingwaves Thera-
vox, 2014; McAllister Byun et al., 2017; Mehta, Zañartu,
Feng, Cheyne, & Hillman, 2012). The importance of suc-
cessfully addressing these and other challenges serves as a call
for further collaboration of engineers, speech scientists, and
clinicians in the continued development of speech technology
and its application to speech data science, with the potential
to have far-reaching interdisciplinary significance.
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