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ABSTRACT

Due to its ability to visualize and measure the dynamics of
vocal tract shaping during speech production, real-time mag-
netic resonance imaging (rtMRI) has emerged as one of the
prominent research tools. The ability to track different artic-
ulators such as the tongue, lips, velum, and the pharynx is
a crucial step toward automating further scientific and clin-
ical analysis. Recently, various researchers have addressed
the problem of detecting articulatory boundaries, but those
are primarily limited to static-image based methods. In this
work, we propose to use information from temporal dynam-
ics together with the spatial structure to detect the articula-
tory boundaries in rtMRI videos. We train a convolutional
LSTM network to detect and label the articulatory contours.
We compare the produced contours against reference labels
generated by iteratively fitting a manually created subject-
specific template. We observe that the proposed method out-
performs solely image-based methods, especially for the dif-
ficult to track articulators involved in airway constriction for-
mation during speech.

Index Terms— rtMRI, CNN, convLSTM, segmentation
1. INTRODUCTION

One of the fundamental challenges in understanding the
mechanisms of human speech motor control is obtaining
accurate information about the movement and shaping of
the vocal tract during speech production. Dynamic vocal
tract imaging technologies are also crucial for understanding
the relationship between speech articulation and acoustics.
However, acquiring high-quality data to resolve fine-grained
movements of speech articulators and the vocal tract without
interfering with speech production remains challenging. In
this regard, real-time MRI (rtMRI) has emerged as one of the
most appropriate tools to image the entirety of a speaker’s
vocal airway during speech production [1, 2, 3].

This non-invasive method can capture dynamic informa-
tion about the coordinated movement of speech articulators
such as jaw, lips, tongue, velum, epiglottis, pharyngeal and la-
ryngeal regions [1, 3, 4]. It provides rich spatial information
of the entire midsagittal plane at a high temporal resolution
of up to 83fps. This allows us to capture detailed articula-
tory motion at a high temporal resolution. As a result, rtMRI
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Fig. 1. A,C) Input real-time MR image. B) Vocal tract con-
tour labels: R1 - Tongue, R2 - Lower lip, R3 - Jaw, R4 -
Trachea, R5 - Pharynx, R6 - Palate, R7 - Velum, R8 - Nasal
cavity, R9 - Nose, R10 - Upper lip, R11 - Epiglottis, R12 -
Incisor. D) R1 and R6 involved in constriction

is extensively used in the speech science and linguistic stud-
ies to understand the dynamics of speech production across
languages, and across health conditions [5]. A crucial step
to automate these analyses is the ability to track different ar-
ticulators such as the tongue, lips, etc. since the shaping of
the airway by the articulators, by forming and releasing con-
strictions (e.g., bringing the tongue tip close to the alveolar
ridge to make the sound /s/ or the lips together to make a /b/),
is the crucial aspect of speech production. Because rtMRI is
typically reconstructed for the midsaggital plane to cover the
upper airway maximally, the task of tracking articulators can
be formulated as a contour detection problem; the same ap-
proach however can be applied to other imaging scan planes
as well.

In this work, we address the problem of articulatory con-
tour detection in rtMRI videos of the midsagittal plane of the
human vocal system. We primarily focus on detecting 12 key
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Fig. 2. Complete architecture of the proposed network.

articulator contours, as shown in Figure 1B. The rtMRI data
we examine in this work are acquired at a high temporal res-
olution to resolve finer details of articulatory motion; as a re-
sult, the spatial resolution of the images is limited [6] to opti-
mize real-time acquisition. Additionally, these images have a
low signal to noise ratio and poor contrast between different
tissue or muscle types in the upper airway.

Over the years, several methods have been explored to
identify the contours corresponding to articulators of interest
[7]. Most of these are methods are semi-automatic and re-
quire speaker-dependent information such as speaker-specific
templates. Recently, with the advent of Convolutional Neural
Networks (CNNs), methods for fast and automatic detection
of contours have been explored. Somandepalli et al. [8] used
a SegNet CNN architecture [9] with a custom loss function to
simultaneously detect and label the articulator contours. Fol-
lowing this, there have been several CNN-based architectures
[10, 11, 12] exploring the articulatory contour detection and
labeling problem.

The primary limitation of these methods is their inability
to detect the air-tissue boundaries when two articulators are
involved in constriction since there are no differences in con-
trast between different articulators. Fig 1D shows the articu-
lators (R1 and R6) involved in constriction. The fundamental
component missing in all these approaches is the information
from the rich temporal structure that is inherent to articula-
tory motion. Due to the presence of deformable articulators
and that too involved in constriction, it is challenging to de-
tect them without using the temporal context along with the
static image frames. In this work, we use Convolutional Long
Short Term Memory [13] (ConvLSTM) networks to model
the temporal context to track articulatory motion.

There have been several works in the medical imaging do-
main that employ combinations of CNNs and LSTMs for the
application of segmentation. A PyraMiD-LSTM architecture
was used in [14] for 3D medical image segmentation. A re-

current fully-convolutional network (RFCN) was used in [15]
for multi-slice MRI cardiac segmentation. Bai et al. [16] used
a method that uses FCN and C-LSTM layers to learn the spa-
tial and temporal context, respectively, for aortic MR image
sequence segmentation. Along a similar direction, we pro-
pose to use a fully-convolutional encoder-decoder network for
generating frame-level encodings and a convolutional LSTM
across time that takes care of the temporal structure.

2. METHODS

We formulate the problem of articulatory boundary detection
as a supervised multi-class pixel labeling task. We train a
deep neural network in a supervised fashion to classify each
pixel into 12 articulator contours (as shown in Figure 1B) or
the airway or a tissue, thus formulating it as a 14 class clas-
sification problem. The ConvLSTM architecture we employ
takes the spatial as well as temporal context into account for
detecting the articulatory boundaries.

2.1. Data

We use the dynamic real time magnetic resonance imaging
videos that consist of the scans of the human midsagittal
plane, recorded while producing running speech. The data
we analyze are from 8 individuals (4 female, 4 male) and
is made publicly available1. The details of the experimental
protocol used can be found in [17]. As described in [6], the
images were acquired at 83.33 frames per second. We obtain
2D grayscale images of size 84x84 pixels.

The articulatory landmarks for all the MRI scans were
produced using the method described in [7]. We followed
the method described in [8] to obtain continuous contours as
reference (”true”) labels. It is important to note that these
’ground truth labels’ are a noisy approximation of the con-
tours as described in [7].

1sail.usc.edu/span/test-retest



2.2. Proposed Architecture
The proposed network consists of two components. The first
is the CNN module to account for the spatial structure and the
other is an RNN module to incorporate the temporal struc-
ture of the speech MRI scans. The CNN module is adapted
from the encoder-decoder network architecture proposed in
[8] to extract spatial features from the input image frames.
We used local response normalization (LRN), and the stan-
dard ReLU activation function. We employed a convolutional
LSTM (ConvLSTM) layer to connect the obtained CNN rep-
resentations across time. The motivation behind using the
ConvLSTMs is their ability to preserve the spatial structure.
Thus the contour probability maps are generated using the
spatial as well as temporal context. The architecture is pre-
sented in Figure 2. The predicted output is generated by pick-
ing the top class at every pixel.

.

3. EVALUATION
3.1. Implementation Details
All our models are implemented using the Keras framework.
The input to the network is a video clip of one second dura-
tion with each frame being 84 × 84. The network is trained
to minimize the categorical cross-entropy loss. Adadelta op-
timiser is used with a batch size of 8 video segments. The
rtMRI videos have a frame rate of 83.33 fps. While training,
we downsampled it by a factor of 3, uniformly picking one
of every 3 consecutive frames. Thus each training sample has
28 frames. This serves two purposes: i) Reduces the com-
putational complexity of the network by reducing the number
of states of the RNN. ii) Helps in mitigating the effect of the
errors in the ground truth labels.
3.2. Results
All experiments were conducted in a leave-one-subject-out
(LOSO) fashion, for the eight subjects in our database. We
use the SegNet based approach used in [8] as a baseline. To
evaluate the performance of our models, we compute the av-
erage of the Cityblock distance between every point of the
output contour to the true labels, and vice versa. The rectilin-
ear nature of the City-block measure allows us to capture the
relative smoothness between two contours. The smaller this
measure, the more similar is the output contour to the true
labels. Table 1 reports the Cityblock distance averaged over
all LOSO models. Figure 3 shows four sample frames with
ground truth and the predicted contours.

For each LOSO model, a total of 70 videos (10 per sub-
ject) were used for training. As seen in Table 1, the pro-
posed method significantly outperforms the SegNet based im-
plementation. This supports our motivation that the rtMRI
frames have a strong temporal context that could be utilized
for segmentation. We exclude the incisor contour (R12) from
further analysis, as the true labels for this region are not pre-
cise. This is due to the fact that the signal acquired in this
region through MRI is very low (because teeth and bone struc-

Fig. 3. Row 2: True Contours; Row 3: Predicted Contours
Showing the frames with different constrictions

tures with low hydrogen content do not image well in MRI).
As the variance in the average Cityblock distances were found
to be low, we consider only one LOSO model for further anal-
ysis.

Label Som. [8] Ours Label Som. [8] Ours
R1 0.93 1.18 R7 1.92 1.10
R2 1.72 1.19 R8 1.42 1.24
R3 0.96 0.65 R9 1.91 1.00
R4 1.12 0.72 R10 1.52 1.01
R5 1.41 0.79 R11 2.31 1.37
R6 1.70 1.04 Avg 1.54 0.99

Table 1. Average Cityblock distance to the true labels

One of the major shortcomings of all the previous ap-
proaches including [8], is the lack of discriminability when
two articulators are involved in maximal constriction position,
i.e., are in contact (such as in sounds like /p/ and /t/) or very
close to one another (such as for /s/ and /sh/). We hypothesize
that, provided the temporal information, the network should
be able to analyze the motion of the articulators in the tempo-
ral neighborhood and thus get a better context to decide the
articulator boundaries. To evaluate this hypothesis, we manu-
ally annotated, by visual inspection, the rtMRI frames where
pairs of articulators are in contact (R2-Lower Lip and R10-
Upper Lip, R1-Tongue and R5-Palate, R7 - Velum and R6
- Pharynx) for one of the subjects in the validation set. We
then compute the average Cityblock distances for the above
articulators across the frames where the respective frames are
involved in constriction and the remaining frames, separately.
We present the average Cityblock distance for the respective
scenarios in tables 2 and 3. We observed that the improve-
ment in the performance of the proposed network over the im-
plementation in [8] is more pronounced in the frames where
articulators are involved in constriction.



Label Somandep [8] Proposed % Impovement
R1 1.436 1.344 6.4
R5 1.662 0.708 57.4
R2 2.375 1.759 25.9

R10 0.952 0.645 32.2
R7 1.614 1.003 37.8
Avg 1.609 1.092 32.1

Table 2. Average Cityblock Distances at frames where the
respective articulators are involved in constriction

Label Somandep [8] Proposed % Impovement
R1 1.334 1.338 -0.3
R5 1.091 0.751 31.2
R2 1.842 1.333 27.6

R10 0.842 0.664 21.1
R7 1.803 1.588 11.9
Avg 1.382 1.135 17.9

Table 3. Average Cityblock Distances at frames where there
is no constriction

4. ABLATION STUDIES

Downsampling: The rtMRI videos, that are generated at
83.33 fps, are downsampled to 28 fps while training (note
that speech movement rates on average are about 12 Hz).
Since the labels are obtained using the algorithm described
in [7], rather than a manual process, we expect the labels are
coarse and have some errors. As the frame rate of the rtMRI
frames is high, and the videos are natural, thus smooth, it can
be assumed that a set of three consecutive frames are visually
very close. Therefore, the loss in information while down-
sampling is nominal. This helps in reducing the substantial
adverse effect of the erroneous ground truth. Our experi-
ments supported this hypothesis, showing better performance
for the majority of contours when the videos are uniformly
downsampled during training when compared with using all
the frames for training, as seen in Table 4.
Temporal window size: To provide temporal context, an ap-
propriate window length for input video segments must be
chosen. In our experiments, a window size of 1 second was
used in the ConvLSTM layer. To see the effect of changing
the window size on the performance, we trained a LOSO
model with ConvLSTM window sizes of 0.5, 1, and 2 sec-
onds. It can be observed from Figure 4 that the dependency of
the performance on the window size various with articulators.
One of the reasons may be the different moving speeds of dif-
ferent articulators. For instance, having a longer window may
be useful for slow-moving articulators such as the nose (R9),
but not for fast-moving contours such as the tongue (R1). On
averaging, we observed that 1-second window offers the best
trade-off among all articulators.
LSTM vs. BLSTM: It is expected that if we provide 2-way
temporal information i.e., forward and reverse sequence, the
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Fig. 4. Evaluation with different temporal windows

Label
ConvLSTM
(Without DS)

ConvLSTM
(With DS)

Bidirectional
ConvLSTM

R1 1.357 1.321 0.981
R2 1.681 1.233 1.390
R3 0.945 0.633 0.741
R4 1.117 0.824 0.626
R5 0.711 0.698 0.451
R6 0.698 0.687 0.839
R7 0.903 1.021 0.844
R8 0.375 0.368 0.616
R9 0.664 0.982 0.796

R10 0.896 0.638 0.545
R11 2.074 1.852 1.574
Avg 1.038 0.916 0.855

Table 4. Comparison of average Cityblock distances when
ConvLSTM with and without uniform downsampling, and
bidirectional ConvLSTM are used

model should perform better. We replaced the ConvLSTM
in our model with Bidirectional ConvLSTM to test this hy-
pothesis. We observed that, due to the increased number
of parameters, the training time increased significantly, but
improvement in performance was minimal, as seen in Table4.

5. CONCLUSION
In this work, we present a state-of-the-art method for articu-
latory boundary detection in real-time MRI videos of speech
production. We propose to exploit the temporal structure, in-
herently present in these MRI videos, to improve the detec-
tion of the air-tissue boundaries crucial for characterizing the
speech generation process. We use a CNN encoder-decoder
network to obtain frame-wise representations. These repre-
sentations are further connected across time using a ConvL-
STM layer. We evaluated the proposed system against cur-
rent image-based methods and established that the addition
of temporal information significantly improves the detection
of deformable articulators, especially when two articulators
are touching each other or in close proximity, as is the case
of time points when maximal airway constrictions are formed
for several classes of speech sounds.
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