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Abstract

In this paper, we present a method to take into account visual
information during the selection process in an acoustic-visual
synthesizer. The acoustic-visual speech synthesizer is based
on the selection and concatenation of synchronous bimodal di-
phone units i.e., speech signal and 3D facial movements of the
speaker’s face. The visual speech information is acquired us-
ing a stereovision technique. Unit selection for synthesis is
based on the classical target cost consisting of linguistic and
phonological features. We compare several methods to take into
account the visual articulatory context in the target cost. We
present an objective evaluation of the synthesis results based
on correlation of the actual visual speech trajectory and synthe-
sized visual speech trajectory.
Index Terms: speech synthesis, unit selection, target costs.

1. Introduction

Face-to-face communication is more effective than situations
involving just the voice. The main reason is that the face im-
proves intelligibility [1], particularly for hard of hearing and
language challenged population [2]. The framework of audio-
visual speech synthesis allows the development and study of
talking heads. In this context, data-driven synthesis is gaining
popularity in audiovisual speech synthesis. The advantage is
that the natural facial gestures are captured which may help in
preserving this naturalness in the final result. However, the fo-
cus is usually made on visual animation, and the final synthesis
is a synchronization of this animation with audio obtained by a
text-to-speech system. Thus the two components are indepen-
dent. In our paradigm, we keep the two components together
during the whole process, and thus we consider them as one
bimodal signal with two facets, acoustic and visual. This has
the advantage of keeping the coherency between both compo-
nents and avoids any perceptual ambiguity. Our acoustic-visual
text-to-speech synthesis (TTS) approach follows unit selection
acoustic TTS synthesis technique. In this scheme, good qual-
ity acoustic speech is synthesized based on the selection and
concatenation of units from a large database [3]. To perform
bimodal synthesis we have extended this idea to concatenate
its acoustic and visual components simultaneously. The first
works dealing with the concatenation of bimodal units are those
described in [4] and [5]. Recently, two systems based on 2D
images were presented in [6] and [7]. The particularity of our
system [8] is that it is based on 3D meshes where the lower part
of the face, related to speech gestures, is using an important
number of markers.

The significant step in the unit selection technique is the ap-
propriate selection of target units satisfying a given target spec-
ification. The features classically used for this purpose include

linguistic, phonetic and prosodic context. This set of features
is language-dependent. The phonetic context also gets affected
significantly by speakers’ articulatory preferences and idiosyn-
crasies. This information is usually based on characterization
defined by phoneticians and found in literature. However, due to
the usage of a recorded audio-visual corpus, in case the speaker
has a peculiar articulation, it might be visually perceived during
synthesis and the final result might present some incoherence.
Actually, in our case, quantitative information regarding artic-
ulation is available and directly measurable from the recorded
audiovisual corpus. For this reason, we propose in this work
to modify the phonetic context information based on how the
recorded speaker is really articulating phonemes. The main goal
is to see whether this improves the performance of synthesis.

Measuring the improvement is not an easy task and devel-
oping some evaluation technique is needed. Such a technique
should make it possible to assess the synthesis results of any
relevant modifications to the target cost or any other modifica-
tions in other components like visual and acoustic join costs and
their weights. The perceptual evaluation techniques are time
consuming and laborious and do not allow for quick evaluation
of any particular strategy. Perceptual evaluation should be con-
sidered for a global and final evaluation of the system, and not
during the development process. An objective evaluation using
a metric to evaluate the synthesis results reflecting the percep-
tual similarity to the best possible extent is a better way to ap-
proach the evaluation problem. One of the common objective
evaluation measures used for the acoustic concatenative speech
synthesis for the trajectory comparison of real and synthesized
sentences is cepstral distance between waveforms [3]. In this
paper, we focus on visual domain objective evaluation by deter-
mining the Pearson correlation coefficient and root mean square
error (RMSE) between the synthesized and real trajectories of
the visual features. A similar objective evaluation has been per-
formed in [9] though the overall system and the approach were
completely different. In their system, an HMM trained for lip
movements with the audio-visual database is used to generate
trajectory which is then used as a guide for the selection of op-
timal mouth images.

In the following sections we first present an overview of our
setup for acoustic-visual speech synthesis. Then we present the
ideas related to the modification of the phonetic context defini-
tion based on the corpus characteristics, followed by the visual
domain objective evaluation.

2. Overview of Bimodal Synthesizer

2.1. Data acquisition and modeling

The bimodal speech corpus consists of visual speech and acous-
tic speech recorded simultaneously. The visual speech informa-
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tion consists of 252 3D point trajectories acquired using stere-
ovision technique sampled at 188.27 Hz. It is acquired simul-
taneously with acoustic speech recorded at 16kHz with 16-bit
precision. The corpus consists of 319 medium-sized French
sentences, covering about 25 minutes of speech. PCA was ap-
plied on a subset of the 3D point data consisting of lower part of
the face (jaw, lips and cheeks) and first 12 principal components
are retained which account for 94% of the data variance.

2.2. Bimodal unit selection and concatenation

For the synthesis of bimodal speech from text, first the text is
automatically phonetized and partitioned into diphones. The
diphone units are looked up in a diphone database built on the
corpus. The diphone database is built by phonetizing and parti-
tioning into diphones after linguistic analysis. For each diphone
required for synthesis, all possible candidates from the database
having the same phonetic label are looked up. A special algo-
rithm is available to handle cases where there are no instances
of the same diphone in the database.

The target specification used for look up and ranking the
diphone candidates consists of linguistic and phonetic features
which specify the phonemes being looked up and their linguis-
tic and phonetic content and context which affect their realiza-
tion. The target specification is compared with the candidate
description for the calculation of the target cost. In addition
to linguistic features (word position, syllable position etc) the
phonetic context is taken into account as binary values in the
target cost. Each of the contextual phonemes is classified as
belonging to an articulatory category of phonemes (protruded,
spread, etc). For instance, the phoneme /u/ belongs to the set
of protruded phonemes for French. This kind of discrete clas-
sification is based on classical phonetic knowledge [11]. Thus,
a candidate with the same articulatory context like the target
phoneme will not be penalized in the target cost i.e. that target
cost component would be zero, else one. In our system, the tar-
get cost of a diphone candidate is just the summation of target
costs of the two phonemes composing this diphone. The target
cost of each of the phonemes is a weighted summation of the
difference between the features of the candidate phoneme and
the features of the target phoneme. The selection among the
set of selected candidates is operated by resolution of the lat-
tice of possibilities using the Viterbi algorithm. The result of
the selection is the path in the lattice of candidates which min-
imizes a weighted linear combination of three costs: the target
cost (TC), the acoustic join cost (AJC), and the visual join
cost (V JC), that is

C = wtcTC + wajcAJC + wvjcV JC (1)

where wtc, wajc and wvjc are weights to be chosen empirically
by the experimenter.

The acoustic join cost is defined as the acoustic distance
between the units to be concatenated, and is calculated using
acoustic features at the boundaries of the units to be concate-
nated: fundamental frequency, spectrum, energy, and duration.
For more details on the target feature weighting and calculation
of the target and join costs, see [12]. Similarly, the visual join
cost is defined as the visual distance between the units to be con-
catenated. This is calculated using the PCA transformed visual
information at the boundaries of the units to be concatenated.

The selected diphone sequence is concatenated in both
modalities. Further details about our bimodal speech synthe-
sizer can be found in [8].
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Figure 1: Articulatory features. Mainly labial using 4 mark-
ers on the face: A, B, C and D. Lip opening and lip spread
are given by the distances � �CD� and � �AB�. Lip protrusion
is given by the displacement of O, the barycenter of the four
points (A, B, C, D) along the normal vector ( �OFp) to the
plane formed by vectors �AB and �CD.

3. Phonetic Context Adaptation

The phonetic context of any particular phoneme influences the
articulation significantly. This is well known as coarticula-
tion. The degree by which a phoneme influences its surrounding
phonemes or is influenced by them varies [13]. The established
phonetic knowledge regarding coarticulation holds almost all
the time [10, 11] . However, as mentioned above, if for some
reason the speaker has a peculiar articulation strategy, this might
be visually perceived during synthesis and the final result might
present some incoherence. It seems natural, as we are deal-
ing with the acoustic-visual synthesis, to take into account the
recorded visual information regarding articulation that is avail-
able and directly measurable from the recorded audiovisual cor-
pus. For instance, the articulatory features like lip opening, lip
protrusion and lip spreading are indeed considered as visual fea-
tures.

In the current scope, we propose to take into account the
articulatory strategy of the recorded speaker to determine more
precisely the category of a given phoneme. The modification
of the phonetic context should modify the visual target cost,
which is a part of the target cost (TC). The visual target cost of
a phoneme (left or right phoneme of a diphone) is calculated by
summing the visual feature differences of the left and the right
contextual phonemes.

3.1. Phonetic category modification

The purpose of the following experiment was to change the
current characteristics of some phonemes which were based on
phonetic knowledge. The changes modified the target and can-
didate description for the target cost to better take into account
their main characteristics as observed in the audio-visual cor-
pus. The expectation was that their synthesized visual speech
component would be more similar to the real visual speech af-
ter the changes. The phonetic feature cost describing the context
of a candidate has a binary value: 0 if phonetic feature is equal
to that required by the target, otherwise 1.

In this work, we considered the lip shape and the place of ar-
ticulation as the set of target features that affect the visual coar-
ticulation. For a given phoneme, the lip shape takes only 3 val-
ues: {protruded, spread and none}. We have tried to change this
classification for some phonemes based on the analysis of the
visual data of the corpus. We performed some statistical analy-
sis of the articulatory features in comparison with the phoneme
categories. More specifically, we re-examined the classification
of phonemes initially categorized as ‘protruded’, ‘spread’ and
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Figure 2: Articulatory feature statistics: Each segment represents a phoneme, centered at the mean and its length is twice the standard
deviation. The number of occurrence of each phoneme is presented. The phonemes of interest are framed : (1) the ‘protruded’ phonemes
{y, ø, œ, @, õe, u, o, õ, O , ã, w, 4 }; (2) the ‘spread’ phonemes { i, e, a, E, ẽ}. All the other phonemes are labeled ‘none’. The segments
plotted in red and green correspond to the phonemes that their category was modified. The brown segments are those where statistics
were recalculated without protruded context in LipProtrusion graph, and without spread context in LipSpread context.

‘none’. As shown in Figure 1, the set of articulatory features in-
cluded lip protrusion, lip opening, lip spreading and jaw open-
ing [14]. The statistics were calculated by considering the artic-
ulatory feature vectors at the center of the phoneme articulation
(place of concatenation in the visual and acoustic domain).

Typically, the set of phonemes which included { i, e, a, E,
ẽ} was categorized as ‘spread’ phonemes and the following set
of phonemes {y, ø, œ, @, õe, u, o, õ, O , ã, w, 4 } was classified
as ‘protruded’. All other phonemes were considered as ‘none’
based on the shape of the lips.

The statistics of the phonetic articulatory features are shown
in figure 2. We considered the mean, the variance and the num-
ber of occurrence of each phoneme. This figure shows that
overall the categories are respected. Nevertheless, we can ob-
serve that some phonemes need to be reconsidered. For this
purpose and to be more accurate, the coarticulation effects of
the surrounding phonemes should be removed. In fact, if one of
the neighboring phonemes is protruded, for instance, it is very
likely that the surrounded phoneme will be protruded too, even
if it is not its main articulatory characteristic, because of coar-
ticulation. Therefore, for phonemes whose visual articulation
seemed to be different from their initial classification, their ar-
ticulatory feature statistics were recalculated by considering a
subset of phoneme instances in the corpus. For example, the

phoneme /f/ seemed to be ‘spread’ unlike its classical phonetic
classification of ‘none’. Thus, only its occurrences in the cor-
pus without spread phonemes in its neighborhood were taken
into account. Its articulatory feature statistics were recalculated
to confirm its effective visual articulation. The following set of
phonemes were considered for recalculation to check if their ef-
fective articulation is ‘spread’: {f, v, t, d, n, s, z, ñ, k, g, N }. For
the two phonemes {S and Z}, the articulatory feature statistics
without rounding context was recalculated. Initially, the sets
of phonemes {f, v, t}, {S, Z} and {ã, õe} were considered as
‘none’, ‘none’ and ‘protruded‘ respectively. However, based on
the statistics and the observation of the data, we found out that
the strategy of our speaker is quite different from this definition.
For this reason, we modified the articulatory target features for
these sets phonemes to ‘spread’, ‘protruded’ and ‘none’ respec-
tively.

In section 4, we present an evaluation where we compared
the synthesis using the initial articulatory description (IPD) and
the changed phonetic description (CPD).

3.2. Continuous visual target cost

From the statistics of the articulatory features explained in the
previous section we reclassified phonetic characteristics into
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distinct categories. The goal was to adapt the classification to
the real ones based on the corpus used. But one can observe
that it is not easy to take a discrete distinct decision from these
statistical values. So the visual target cost component has to
be formulated as a real value in the range [0, 1] rather than bi-
nary value. In this way, the articulatory characteristics should be
considered as continuous. So the visual target cost component
has to be formulated as a real value in the range [0, 1] unlike
binary value. For calculating the continuous target cost we used
the articulatory feature statistics calculated as explained in sec-
tion 3.1. In the following subsections we first explain the earlier
work by Mattheyses et al. [15] towards a continuous visual tar-
get using a phoneme difference matrix and then our method of
calculating the continuous visual target cost. In [15], the au-
thors used shape and texture parameters extracted by applying
Active Appearance Models on 2D facial images of speech ani-
mation. We tried to apply the same logic for the calculation of
the continuous target cost using articulatory features.

The articulatory feature statistics are represented by µij and
σij to represent the means and variances for all the phonemes
(index i) and the various articulatory features (index j).

3.2.1. Visual target cost based on phoneme difference matrix

In [15], the calculation of visual target cost was as follows: Two
phonemes were considered similar in terms of visual represen-
tation if their mean representations were alike and, in addition,
if these mean representations were sufficiently reliable (i.e. if
small summed variations were measured for these phonemes).
Two matrices were calculated, which express for each phoneme
pair (p, q); the difference between their mean representations
D

µ
pq and the sum of the variances of their visual representation

D
σ
pq , respectively:

D
µ
pq =

�
Σj(µpj − µqj)2

D
σ
pq = Σjσpj + Σjσqj

Scaling both matrices between zero and one gave D
µ
�

pq and

D
σ
�

pq , after which the final difference matrix was calculated:

Dpq = 2Dµ
�

pq +D
σ
�

pq

Matrix Dpq is used to calculate the visual target cost during
selection.

3.2.2. Visual target cost based on contextual significance

In the previous method, the point of emphasis was centered on
the contextual phonemes without taking into account the na-
ture of the main target phoneme. For each phoneme, the fea-
ture with least variance is the one which gets least modified due
to coarticulation and the features with higher variance get af-
fected more due to coarticulation. Thus, obtaining similar con-
text is important for features which get more influenced due to
coarticulation. We applied this principle for the calculation of
phoneme difference Dpq(i) as function of the target phoneme
i which is looked up in the corpus; where, p is the contextual
phoneme (left or right) of i in the target utterance and q is the
contextual phoneme of the candidate for i. The difference of the
mean of the contextual phoneme was weighted by the variance
of the target phoneme:

Dpq(i) = Σjwij |µpj − µqj | (2)

!"#$%&'()&*
'&#$&#+&

,&-./
'&#$&#+&

*(0%1#&/!" *(0%1#&/"#

*(0%1#&//!" *(0%1#&/"#

Figure 3: Adjusting diphone lengths. Each of the corresponding
half-phones which are part of the diphones in the synthesized
and real sentences are re-sampled through linear interpolation
to make the number of visual samples equal.

wij = (
σij

Σjσij
)

Dpq(i) was scaled between zero and one. This gives the
distance between contextual phonemes as a function of the
phoneme for which the proximate context is being looked up
during the selection process for the calculation of visual target
cost.

The weight wij gives the relative importance of the com-
ponent j with respect to the others. More the variance σij is,
higher the weight on the contextual difference for the compo-
nent j is. Thus, wij reflects the fact that context has important
impact on these components with higher variance.

4. Objective Evaluation of Synthesis and

Results

4.1. Objective Evaluation

For the purpose of evaluating the synthesis results, we used
a method based on leave-one-out cross-validation technique,
where a single sentence from the corpus (the set of 319 sen-
tences) was used to evaluate the synthesis (comparing the syn-
thesized sentence with this original one) and the remaining sen-
tences of the corpus as source for the database of diphones for
the acoustic-visual synthesizer. This was repeated in a way that
each sentence was used once as a test sentence. The advantage
of this method is that it avoids building a specific test corpus for
evaluation. However, we reduce marginally the choice of se-
lection, by removing some diphones of the sentence discarded
from the original corpus.

After synthesizing a given sentence all the half-phones (the
two half-phones of a diphone) of the synthesized sentence and
the actual sentence were re-sampled individually to make the
number of visual samples equal in both the real and synthesized
sentences (see figure 3). This was done using a simple linear
interpolation of the 12 PCA coefficients. After this, the Pearson
correlation coefficient between 12 PCA coefficients of all the
synthesized sentences and the real sentences actually present in
the corpus was determined. Similarly, the Pearson correlation
coefficient between 4 articulatory parameters was also deter-
mined. The root mean square error between articulatory feature
trajectories of the synthesized and the real sentences present in
the corpus was determined.

If xd and yd are the sequences of the d
th PCA coefficient

of a real and synthesized sentence having n samples, the corre-
lation coefficient is calculated as follows:
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rxdyd =
nΣxd(i)yd(i)− Σxd(i)Σyd(i)�

nΣxd(i)2 − (Σxd(i))2
�

nΣyd(i)2 − (Σyd(i))2

(3)
Though it is almost impossible to have a perfect correla-

tion between the real and synthesized sentence, it seems to
be a reasonable assumption that the trajectories for two di-
phones selected with similar phonetic context and linguistic
description would be significantly correlated or similar. For
now, we proceed with visual domain objective evaluation of the
speech information alone, assuming that the visual speech ani-
mation would be strongly correlated with the underlying acous-
tic speech. Alongside, we are working on developing other met-
rics where both acoustic and visual components are considered
simultaneously. An example of the trajectories of the first 3
principal components of a synthesized sentence and the corre-
sponding real sentence is shown in figure 4.

4.2. Evaluation Results

Based on the above explained objective evaluation technique the
performance of the various visual target cost techniques were
determined. The target cost techniques with the binary visual
target cost components (IPD and CPD) performed comparable
to each other (rxdyd = 0.813 for PC 1). Similarly, the con-
tinuous visual target cost components phoneme difference ma-
trix approach (PDM) and phoneme difference based on contex-
tual significance (PDCS) performed comparable to each other
(rxdyd = 0.816 for PC 1). The continuous visual target costs
gave marginally better results consistently compared to the bi-
nary visual target cost approaches even when different weights
for the visual target cost component were used. This is also
apparent when observing the performance with respect to artic-
ulatory features. In fact, the correlation for the first two methods
IPD and CPD is 0.70 and it increases up to 0.72 for the PDM
and PDCS for jaw opening (see table 1). Table 2 shows the
RMSE between real and synthetic trajectories for the articula-
tory features. The RMSE is almost the same for the 4 methods.
We should notice that each of the examined methods affects the
ranking of the selected candidates though it is not that obvious
that there are differences between them. We should emphasize
that the significance of this examined visual target cost compo-
nent in the overall target cost is 1%, as we have a large set of
features. Therefore this can explain this marginal variation in
the performance.

Hence, the possibility that a continuous target cost compo-
nent better represents the differences between phonemes while
optimizing the synthesis performance for particular corpus than
discrete binary target cost components has to be contemplated.
Given the limited generalizing power, for a corpus of small
size and without a very well balanced diphone coverage in the
corpus, the target cost consisting of phonetic context modeling
based on classical knowledge can be considered sufficient. One
should observe that the objective evaluation used in this work
is purely visual. It will be more appropriate if we consider a
combination of visual and acoustic metrics to be used for such
evaluation. This is actually our current focus, however finding
the balance between the acoustic component and the visual one
is still not easy to reach and is under careful consideration.

Examining the results of the objective evaluation presented
in this paper of our acoustic-visual synthesis, shows that they
are quite good. The overall correlation is quite high. In addition,
the RMSE is very low and acceptable. In fact, the Jaw open-
ing RMSE is around 2mm, lip opening (2.7mm), lip spreading

(1.38mm) and lip protrusion is 4mm. This is a good indica-
tion that our synthesis method provides similar trajectories to
those of real sentences. This is quite interesting, as we know
that the purpose of synthesis is not to generate the exact speaker
articulation (unlike acoustic-to-articulatory inversion). Thus, it
seems that our acoustic-visual synthesis, based on the main idea
of considering the signal as one bimodal signal, was able to cap-
ture finely the articulatory strategy of our speaker. This can be
clearly seen in Figure 4.

Table 1: Correlation coefficients between the real and synthesized tra-
jectories of first 3 principal component coefficients and the four artic-
ulatory features by various target cost strategies. IPD: initial phoneme
description, CPD: changed phoneme description, PDM: phoneme dif-
ference matrix, PDCS: phoneme difference based on contextual signifi-
cance. The articulatory features: JO (jaw opening), LP (lip protrusion),
LO (lip opening) and LS (lip spreading). The first four principal com-
ponents account for about 58%, 24% and 7% respectively.

PC IPD CPD PDM PDCS
1 0.813 0.813 0.816 0.816
2 0.715 0.715 0.719 0.720
3 0.726 0.725 0.729 0.729

JO 0.708 0.708 0.728 0.728
LP 0.694 0.693 0.698 0.698
LO 0.671 0.670 0.689 0.689
LS 0.636 0.636 0.640 0.640

Table 2: Root Mean Square Error (RMSE) in millimeters between the
real and synthesized trajectories of the four articulatory features (same
notations as table 1).

AF IPD CPD PDM PDCS
JO 2.11 2.11 2.06 2.06
LP 4.04 4.04 4.02 4.02
LO 2.70 2.70 2.63 2.63
LS 1.38 1.38 1.37 1.37

5. Conclusion

In this paper, the inclusion of the articulation strategy of the
recorded speaker within the unit selection step was examined.
The evaluation results show that there is scope for improving
the synthesis performance by optimizing the target cost func-
tion for the underlying corpus being used for unit selection. The
improvement is marginal for now. However, we believe that it
is promising and worth more investigation. The visual target
cost of the phonetic context is a small portion of bigger set of
features, where each feature has its own weight. In addition,
the current corpus is still a small corpus. Thus, tuning weights
and evaluating the different strategies on a larger corpus might
provide more insights. Currently, we are working on larger au-
diovisual corpus that we will use in the near future. The sim-
ple objective evaluation, visual only though, showed that our
acoustic-visual synthesis method has the capability to capture
the speakers articulatory strategy. It is very likely that consid-
ering the acoustic-visual signal as bimodal is very interesting
approach.
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Figure 4: Synthetic and Real trajectories for the first principal component for the sentence “Sur ces mots, elle sortit vivement de la
pièce.” with the following phoneme sequence “sil s y K s e m o sil E l s O K t i v i v @ m ã d @ l a p j E s sil”. The Pearson correlation
for the first principal component was 0.89.
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