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Abstract
Recent developments in real-time magnetic resonance imaging
(rtMRI) have enabled the study of vocal tract dynamics dur-
ing production of running speech at high frame rates (e.g., 83
frames per second). Such large amounts of acquired data re-
quire scalable automated methods to identify different articu-
lators (e.g., tongue, velum) for further analysis. In this paper,
we propose a convolutional neural network with an encoder-
decoder architecture to jointly detect the relevant air-tissue
boundaries as well as to label them, which we refer to as ‘se-
mantic edge detection’. We pose this as a pixel labeling prob-
lem, with the outline contour of each articulator of interest as
positive class and the remaining tissue and airway as negative
classes. We introduce a loss function modified with additional
penalty for misclassification at air-tissue boundaries to account
for class imbalance and improve edge localization. We then
use a greedy search algorithm to draw contours from the prob-
ability maps of the positive classes predicted by the network.
The articulator contours obtained by our method are compara-
ble to the true labels generated by iteratively fitting a manually
created subject-specific template. Our results generalize well
across subjects and different vocal tract postures, demonstrating
a significant improvement over the structured regression base-
line.
Index Terms: Real-time magnetic resonance imaging (MRI),
vocal-tract dynamics, contour drawing, convolutional neural
networks (CNN)

1. Introduction
Recent imaging protocols [1] have been able to achieve high
frame rates such as 83 frames per second (fps) and higher for
capturing the dynamics of vocal tract shaping during speech. In
this context, there is a need for scalable methods to automat-
ically identify outlines (contours) of the different articulators
involved in speech production for further analysis. Moreover,
these methods have to generalize across subjects, accounting
for variation in size and shape of the vocal tract and positioning
of the person in the MRI scanner.

Over the years, different ways (e.g., [2, 3, 4, 5]) have been
explored to semi-automatically identify contours corresponding
to the articulators of interest. An edge detection method in the
spatial frequency domain using an anatomical template was pro-
posed in [3]. This method performs nearly as well as manual
tracing of the contours. However, this system requires careful
design of an initialization template for each subject. Addition-
ally, the optimization steps are computationally expensive and
require a few minutes per image frame using its MATLAB im-
plementation [3].

The objective of our work is to obtain a non self-intersecting
polyline contour description corresponding to the twelve artic-
ulators shown in Fig 1B. In this paper, we formulate this as
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Figure 1: A) Input midsagittal real-time MR image B) Vocal
tract contour labels: R1-upper lip, R2-nose, R3-nasal cavity,
R4-palate, R5-velum, R6-pharynx, R7-trachea, R8-tongue, R9-
lower lip, R10-jaw, R11-incisor, R12-epiglottis C) Output class
probability map D) Proposed system output contours

a multi-class pixel labeling problem. Image processing tech-
niques such as morphological operations do not yield reliable
results due to low signal-to-noise ratio (SNR) in these images.
However, there is a rich structure (spatial relation) among the
articulators of interest. Exploiting this structure among the
outputs, one can pose this as a structured regression problem.
Methods such as dlib [6] have been successfully used for face
landmark detection [7]. In contrast to face images, the MR im-
ages we use here (Fig 1A) have a low resolution and high noise
and lack textural variation. As such, designing features can be
challenging for MR images of the vocal tract. Convolutional
neural networks are best suited for this problem since they can
learn the spatial relationship between different regions in the
image, and are being increasingly used with good performance
for medical image analysis [8].

VGG [9] is one of the most widely used CNN architectures
for various image recognition tasks. In particular, many have
implemented encoder-decoder architectures for pixel labeling
tasks based on VGG. While the encoder networks in these are
similar to VGG in topology, they differ in the decoder network,
training and inference. For example, a fully convolutional net-
work for semantic segmentation tasks with upsampling in the
decoder network was proposed by [10] to predict pixel-level la-
bels. SegNet [11] has additionally used novel decoder layers
that upsample based on the corresponding indices from max-
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Figure 2: Schematic diagram of the proposed encoder-decoder network architecture; Conv: convolution, LRN: local response normal-
ization, ReLu: rectified linear unit; a) input b) output class probability map

pooling layers of the encoder.
Along similar lines, fully convolutional networks have also

been successfully used for edge detection (e.g., [12, 13, 14]).
However, to the best of our knowledge there has been no work
that can jointly detect edges and label them. We refer to this
task as semantic edge detection. Building upon the ideas from
the aforementioned papers, we propose a fully convolutional
encoder-decoder network. Here, it is important to make the dis-
tinction between edges and contours. Generally, edges are com-
puted as extrema points of the image gradient in the direction of
the gradient. Ordered edge points constitute of a contour. In the
case of open contours that lack parametrization (especially, de-
formable, non-convex contours) which is the case for this data,
ordering points can be a very difficult problem. For this pur-
pose, we explore a greedy search approach for drawing contours
on the class probability maps obtained from the CNN.

2. Methods
2.1. Data and label generation

All the data and labels used in this study are publicly available
(sail.usc.edu/span/test-retest). Dynamic rtMRI data were col-
lected during production of running speech from eight healthy
volunteers (4F/4M, age: 28.3 ± 4.3). The details of the exper-
imental protocol used can be found in [15]. All imaging was
performed on a GE Signa Excite 1.5T scanner with a custom
eight-channel upper airway coil [1]. Sequence parameters were
as follows: field-of-view (FOV) 200x200 mm, in-plane recon-
struction, spatial resolution 2.4x2.4 mm, slice thickness 6 mm,
TR 6 ms, TE 3.6 ms, flip angle 15◦, and 13 spiral interleaves
for full sampling. The scan plane was manually aligned with the
mid-sagittal plane of the subject’s head. Images were retrospec-
tively reconstructed at 83.33 fps as described in [1] resulting in
2D images of size 84X84 (see Fig 1A).

We used the method proposed in [3] to generate true la-
bels for training the CNN. The polyline points obtained from
this method were linearly interpolated to generate pixel-level
labels for twelve different articulators (positive classes, see
Fig 1B). The remaining tissue and airway were labeled as nega-
tive classes. Airway was identified as the region of intersection
of the entire image FOV and the convex hulls generated from
the twelve articulators. It is important to note the performance
of our system is somewhat limited by using the pixel-level la-
bels thus generated as true labels since the shortcomings of the
method as described in [3] are carried over. One in particular, is
the lack of discriminability when two articulators are in contact.

2.2. Proposed CNN architecture
The proposed encoder-decoder model was inspired from some
of the architectures discussed in Section 1. The important mod-
ifications we introduced are: 1) reducing the network size in
order to accommodate for the low resolution of MR images and
the number of parameters to be trained; 2) using local response
normalization (LRN, [16]) for the activations; and 3) using a
custom loss function penalizing for tissue-airway boundaries to
address class imbalance per image and improve edge localiza-
tion (see Section 2.3)

Our network was trained for a multiclass pixel labeling task,
specifically twelve positive classes (articulator edges) and two
negative classes (airway and tissue). Fig 2 depicts the the over-
all architecture of the proposed network along with the number
of filters used in the convoultional layers, C1–C9. We use LRN
instead of Batch Normalization (subtracting the mean activity)
since LRN operates on local neighborhoods. This allows for
detection of high-frequency features (which indicate edges in
an image) with a big response, while damping others that are
uniformly large in the neighborhood. In comparison to Batch
Normalization, this resulted in higher output prediction proba-
bilities for the pixel along the contour of interest. Initial testing
showed about 8-12% improvement in the loss function on the
training as well as validation data. The hyper-parameters of the
LRN were set to the values proposed in [16]. The input to our
network is a 84X84 grayscale MR image of the upper airway
and the kernel size for convolution filters, C1–C9 was set to
3x3. Mmax-pooling was performed over a spatial pixel neigh-
borhood of 3x3 with a stride of 2 pixels. While max-pooling
ensures invariance to translation of the images, LRN effectively
retains activation responses to image edges as described earlier.

Upsampling was performed with a factor of two for both
image dimensions. Additionally, zero-padding layers (Z1, Z2
in Fig 2) were introduced in both the encoder and decoder to
retain the dimensionality of the image. From our experiments,
we observed that increasing the number of layers did not im-
prove the overall performance but only increased the number
of parameters to be learned. This is perhaps because most of
the articulators are spatially localized and can be sufficiently
represented by the kernel sizes used in the convolutional lay-
ers. Finally, the last convolution layer from the decoder was fed
into a 14-class softmax layer. Due to the heavy imbalance be-
tween positive and the negative classes per image, we examined
the probability maps corresponding to the articulators instead of
the pixel-level class labels generated by the network to obtain
the final contours.
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Figure 3: Contour drawing example; Inset: probability map.

2.3. Airway-tissue boundary penalized loss function

We used the cross-entropy loss function [10] to train our net-
work which is summed up over all the pixels in the mini-batch.
Since cross-entropy penalizes uniformly for classification error
between all classes, we first address the class imbalance within
each image. Approaches such as median frequency balancing
[11] have been used in case of class imbalance across the entire
training set. This method uses the ratio of the median of class
frequencies across the entire training set to the class frequency
to weigh the loss function. However, methods such as these do
not address the image-level class imbalance as in our case.

In preliminary experiments, we observed that the confusion
of labels between the positive classes and the airway was more
pronounced than those between the positive classes or between
the positive classes and tissue. This is likely due to low SNR in
the MR images. To this end, we introduced an additional regu-
larization term similar to that proposed in [14]. The motivation
behind this is to penalize more for a mis-classification of one
of the positive classes to airway. To compensate for the class
imbalance, we kept this penalty asymmetric, i.e., no additional
penalty was added for mis-classification of airway to one of the
positive classes.

Let the image dimensions, width and height be w and h
respectively. The total number of pixels to be labeled be n,
where n = w × h where, w = h = 84. For each image in a
mini-batch training set: {x(i), y(i)}ni=1 where x(i) is the i−th
image pixel. We denote the class labels as y(i) where i ∈
{−1, 0, 1, ...K}, with K = 12. If y(i) = {−1, 0}, then the
pixel, x(i) belongs to airway and tissue respectively. If y(i) >
0, then x(i) belongs to one of the positive classes. Let a(i)k :
k ∈ [−1,K] be the output of the k−th unit of the softmax layer
following layer C9 in the decoder for x(i). The probability that
the class label, y(i) = k is given by

p
(i)
k =

exp(a
(i)
k )∑K

j=−1 exp(a
(i)
j )

(1)

The standard cross-entropy loss that for each image, I in
the training set is:

L0(I) = −
n∑

i=1

K∑
k=−1

1(y(i) = k)logp
(i)
k (2)

where 1(.) is the indicator function and L0(I) is summed up
across all images in the mini-batch. As discussed earlier, adding

the regularization term to Eq. 2 gives the final loss function:

L(I) = L0(I)−

[
n∑

i=1

α

(
1(y(i) = −1)logp(i)−1

+

K∑
k=1

1(y(i) = k)log(1− p(i)−1)

−
K∑

k=1

1(y(i) = −1)log(1− p(i)k

)]
(3)

The last two summation terms in the Eq. 3 are separated to
highlight the asymmetric nature of the penalty. Keeping only
the first two summation terms in Eq. 3 would penalize uni-
formly for mis-classifications between positive classes and air-
way. The last term ensures that no additional penalty is added
for incorrectly classifying airway as a positive class. Here, α
is the parameter that controls the asymmetric penalty. When it
is small, L(I) ≈ L0(I) and increasing α would make Eq. 3 a
loss function for a binary classification problem between airway
and any of the positive classes, thereby increasing classification
errors among the positive classes. In all our experiments, we
set α to 1.

We used standard backpropagation on the modified loss
function to optimize the parameters of the network. All our
models were implemented in Keras (https://keras.io/) with a
mini-batch size of 250 and the code is publicly available
(https://github.com/krsna6/rtmri-segnet)

2.4. Contour drawing on output probability maps

Algorithm 1: Contour drawing on probability map
Input: Set of probabilities P = {pij} and end

points E = {eij} with |E| = l
Output: Ordered contour points O = {oij}
S = {}

while |E| > 0 do
O(l) = {eij}
Flag set, F (l) = {} to prevent loops
pij ← eij
while {pij} 6= ∅ do

Select the next point with maximum probability
qij ← {argmax

p
N8(pij)} ∩O(l) ∩ F (l)

Add non-maxima neighbors to a flag set
F (l) ← {N8(pij) ∩ qij} ∪ F (l)

Update the next point in the contour
O(l) ← O(l) ∪ {qij}
pij ← qij

end
E ← E ∩ {eij}

S ← S ∪
{ |O(l)|∑

k=1

O
(l)
k

}
end
Pick the contour that maximizes the sum of probabilities
O = argmax

S
O(l)

One approach to draw a contour on a probability map is
finding the longest path [17] on a weighted directed acyclic
graph (DAG) from the pixels. However, two important factors
to design a DAG are absent in our output: 1) starting and ending
points of the path along the contour; and 2) length of the path
or order of points.
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Figure 4: Generalization of our proposed approach across subjects, articulatory gestures and image SNR

We propose instead a greedy search algorithm for contour
drawing inspired from connected component labeling [18]. Let
P

′
= {pij} be the set of all pixels in the probability map where

the coordinates i, j ∈ [1, 84] and the set of non-zero probabil-
ities, P = {pij | pij > θ}. The threshold parameter, θ is set
to the average of all probability values below 0.01. Denote the
function to generate non-zero probabilities in the 8-connected
neighborhood of a pixel pij as N8(pij). We approximate the
set of end points, E as the pixels which have exactly two neigh-
bors, at least one of which is well connected, i.e., N8(pij) > 2.
With these end points as initial seeds, the points along the con-
tour were determined as described in Algorithm 1. Fig 3 il-
lustrates an example of contour drawing for the tongue region.
Contour 1 obtained from the end point, E1 was chosen over
Contour 2 from E2 to maximize the sum of probabilities along
the path. Since we use pixel connectivity to determine the next
point along the contour, the order is implicitly determined. It
is important to note that the proposed algorithm is a heuristic
and its theoretical guarantees have not been studied. Modifying
the network to be able to incorporate a DAG framework for the
probability maps would be part of our future work.

3. Experiments and Results
All experiments were performed in a leave-one-subject-out
(LOSO) fashion for the eight subjects in our database, the re-
ported measures are averaged across all LOSO models. The
incisor and epiglottis (R11, R12 in Fig 1B) were excluded from
further analysis since the true labels for these regions are not
precise. A few examples illustrating the generalizability of our
approach across subjects, articulatory gestures and image SNR
are shown in Fig. 4. One of the drawbacks of our method is the
lack of discriminability when articulators are in contact as in
Fig. 4B. This is in part due to the ambiguity of true labels used
for training generated from [3].

For each LOSO model, a total of 77000 images (11000 per
subject), were randomly sampled to form the training data. The
average training loss as per Eq. 2 (after 20 epochs, mini batch
size=250) across the eight LOSO models for the proposed net-
work was 8.9 ± 0.2% (c.f. 12.4 ± 0.4% from SegNet [11]).
Additionally, the number of parameters to be learned in our net-
work was about four times smaller than that of SegNet. The
training loss for our network dropped to 7.1 ± 0.1% with the
modified loss function as per Eq. 3. Although the gains in the
accuracy with the modified loss function were minimal, we ob-
tained sharper probability maps for the articulators.

As a baseline, we used a structured regression approach,

dlib[6], to identify the points along the contours as landmarks.
To compare the output contours from our approach and that of
dlib with the true labels, we computed the average of the least
Cityblock distance from every point of the output contour to the
true labels and vice versa. The rectilinear nature of the City-
block measure allows us to capture the relative smoothness be-
tween two contours. The smaller this measure, more similar is
the output contour to the true labels. As shown in Table 1, our
method outperforms dlib significantly (paired t-test p << 0.01
to reject H0 : µ0 ≤ µ1) for each articulator separately. Further-
more, dlib is sensitive to head size, position of the image and as
such it did not generalize well across subjects. Our method per-
forms best for articulators which have a distinct boundary with
the airway (R1, R2, R9, R10), The performance is least for R5
(velum) due to the low contrast with adjacent tissue and higher
noise in this region.

Table 1: Average Cityblock distance to the true labels

Label dlib Proposed Label dlib Proposed

R1 3.01 1.52 R6 2.25 1.41
R2 2.42 1.91 R7 2.71 1.12
R3 2.78 1.42 R8 6.32 0.93
R4 2.56 1.70 R9 4.81 1.72
R5 4.25 1.92 R10 2.49 0.96

4. Conclusions and Future Work
In this paper, we propose a template-free approach for vocal
tract articulator segmentation in real-time MR images using
a CNN with an encoder-decoder architecture. We then use a
greedy search algorithm to draw contours from the probability
maps obtained from the network for each of the articulator. Our
results demonstrate that the proposed method generalizes well
across subjects as well as different articulatory gestures.

One of the drawbacks of our system is the lack of discrim-
inability when two articulators are in contact (e.g., velum). This
is in part due to lack of tissue-contrast in the MR images and
imprecise training labels. Another potential shortcoming is that
our method operates on a frame-by-frame basis, without taking
into account the temporal structure of the rtMRI sequences. Our
future work will focus on addressing these issues.
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