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Abstract
We present the USC Speech and Vocal Tract Morphology MRI
Database, a 17-speaker magnetic resonance imaging database
for speech research. The database consists of real-time mag-
netic resonance images (rtMRI) of dynamic vocal tract shap-
ing, denoised audio recorded simultaneously with rtMRI, and
3D volumetric MRI of vocal tract shapes during sustained
speech sounds. We acquired 2D real-time MRI of vocal tract
shaping during consonant-vowel-consonant sequences, vowel-
consonant-vowel sequences, read passages, and spontaneous
speech. We acquired 3D volumetric MRI of the full set of vow-
els and continuant consonants of American English. Each 3D
volumetric MRI was acquired in one 7-second scan in which
the participant sustained the sound. This is the first database to
combine rtMRI of dynamic vocal tract shaping and 3D volumet-
ric MRI of the entire vocal tract. The database provides a unique
resource with which to examine the relationship between vocal
tract morphology and vocal tract function. The USC Speech and
Vocal Tract Morphology MRI Database is provided free for re-
search use at http://sail.usc.edu/span/morphdb.
Index Terms: speech production, speech corpora, magnetic
resonance imaging, multi-modal database, large-scale phonetic
tools

1. Introduction
The articulatory speech data-sets that are readily available to
the research community have been consistently well-utilized in
pursuit of addressing fundamental questions about speech pro-
duction [1, 2, 3]. Until relatively recently, speech articulatory
data had been difficult to obtain and generally lacking. A grow-
ing number of resources has begun to reverse this problem, but
many still tend to focus on targeted laboratory speech (e.g.,
simple syllables or isolated phonemes) or only on read speech.
Here, we present the USC Speech and Vocal Tract Morphology
MRI Database, a new database for the community that captures
a wide variety of dynamic speech tasks in conjunction with de-
tailed structural parameters and also non-speech articulations,
all with an eye toward understanding and explaining speech and
speaker variability.

Magnetic resonance imaging (MRI) is a flexible technol-
ogy for speech research. Rapid imaging methods have achieved
a balance among the competing factors of temporal resolution,
spatial resolution, and signal-to-noise ratio that allows for flexi-
ble characterization of vocal tract morphology and function us-
ing a suite of complementary MRI methods [4, 5]. Real-time
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MRI (rtMRI) characterizes the dynamic shaping of the vocal
tract during speech in any scan plane(s) of interest with no need
for repeated scans [6]. 3D volumetric MRI characterizes the
entire vocal tract with high spatial resolution during sustained
sounds in as little as 7 s [7]. Together, these scans character-
ize the function and morphology of the vocal tract with high
temporal (rtMRI) and spatial resolution (3D volumetric MRI).
The USC Speech and Vocal Tract Morphology MRI Database
provides rtMRI of dynamic vocal tract shaping, denoised au-
dio recorded simultaneously with rtMRI, and 3D volumetric
MRI of a comprehensive set of the American English contin-
uant sounds. The USC Speech and Vocal Tract Morphology
MRI Database is provided free for research use at the project
page: http://sail.usc.edu/span/morphdb.

2. Database acquisition
2.1. Experiments

Seventeen (8 m, 9 f) speakers of American English participated.
None of the participants spoke a language other than English
fluently, nor had any lived outside the United States for a signif-
icant amount of time. See Table 1 for participant age and state
of origin. The parents of each participant were native speakers
of American English. None of the speakers reported abnormal
hearing or speech pathology.

Each speaker participated in two sessions on different days.
One session was for acquiring rtMRI data-sets; the other ses-
sion was for acquiring 3D volumetric MRI data-sets. The ex-
perimenter explained the nature of the experiment and the ex-
periment protocol to the participant before each scan. The par-
ticipant lay on the scanner table in a supine position. The head
was fixed in place by foam pads inserted between each temple
and the receiver coil. The participant read visual stimuli from
a back-projection screen from inside the scanner bore without
moving the head. The speech corpus captured 3D MRI of sus-
tained continuant sounds (see Table 2) and rtMRI videos of iso-

ID age state of origin ID age state of origin

F1 25 CA M1 33 WI
F2 25 NY M2 27 VA
F3 26 CA M3 28 WI
F4 25 DC M4 20 CA
F5 28 SC M5 38 DC
F6 31 HI M6 24 NJ
F7 64 MN M7 33 TX
F8 26 TX M8 26 IA
F9 22 RI

Table 1: Participant characteristics
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Figure 1: Slices of 3D volumetric MRI showing inter-speaker variation in the midsagittal vocal tract shape for American English [ô]
from the 17 speakers. Each 3D volumetric MRI was acquired in one 7-second scan in which the participant sustained the sound.

lated consonant-vowel-consonant utterances, vowel-consonant-
vowel utterances, passages (neutral, fast, clear, whispered,
yelling), and spontaneous speech (see Table 3). After complet-
ing a session, the participant was paid for their participation in
the study. The USC Institutional Review Board approved the
data collection procedures.

2.2. 3D volumetric MRI acquisition

The 3D volumetric MRI sequence captured the 3D volume of
the upper airway in 7 s [7, 8]. Participants did not report experi-
encing difficulty sustaining the continuant phonemes of English
for 7 s.

Data were acquired on a 3.0T Signa Excite HD MRI scan-
ner (GE Healthcare, Waukesha, WI) with gradients capable of
40mT/m amplitudes and 150mT/m/ms slew rates. A body
coil was used for RF transmission, and an 8-channel neurovas-
cular array coil was used for signal reception. Only the 4 su-
perior elements were used for reconstruction. The vocal tract
region of interest (ROI) was imaged using a midsagittal slice
with 8 cm thickness in the right-left (R-L) direction. The read-
out direction was superior-inferior (S-I), and the phase encode
directions were anterior-posterior (A-P) and right-left (R-L).
A gradient echo (GRE) sequence was used with TE=2.3ms,
TR=4.7ms, 10° flip angle, ±125 kHz receiver bandwidth (4 µs
sampling rate), NEX=1, 1.33mm× 1.33mm× 1.33mm spa-
tial resolution, and 20 cm× 24 cm× 8 cm FOV. Additional
technical specifications for the 3D volumetric MRI acquisition
and reconstruction are reported in [8]. Figure 1 presents 17
speakers producing American English [ô], showing midsagittal
slices of the 3D volumetric image.

2.3. Real-time MRI acquisition

Data were acquired on a Signa Excite HD 1.5T scanner (GE
Healthcare, Waukesha WI) with gradients capable of 40mT/m
amplitude and 150mT/m/ms slew rate. A body coil was

used for radio frequency (RF) signal transmission. A custom
upper airway receiver coil array was used for RF signal re-
ception. This 4-channel array included two anterior coil ele-
ments and two coil elements posterior to the head and neck.
Only the two anterior coils were used for data acquisition be-
cause the posterior coils of this hardware were shown to re-
sult in aliasing artifacts. The rtMRI acquisition protocol was
based on a spiral fast gradient echo sequence. Thirteen in-
terleaved spirals together formed a single image. Each spi-
ral was acquired over 6.164ms (repetition time, TR, which
includes slice excitation, readout, and gradient spoiler), and
thus every image comprises information spanning 13× 6.164
= 80.132ms. A sliding window technique was used to al-
low for view sharing and thus to increase frame rate [9, 10].
The TR-increment for view sharing was 7 acquisitions, which
resulted in the generation of an MRI video with frame rate
1/(7 × TR) = 1/(7 × 6.164ms) = 23.18 frames/s. The
imaging sequence had 15° flip angle, ±125 kHz receiver band-
width, one 5mm midsagittal slice, 2.9mm2/pixel in-plane
spatial resolution, and 200mm× 200mm FOV. Scan plane lo-
calization of the midsagittal slice was performed using RTHawk
(HeartVista, Inc., Los Altos, CA), a custom real-time imaging
platform [11]. Additional technical specifications for the rtMRI
acquisition and reconstruction were reported in [3]. Figure 2
exemplifies the rtMRI videos for three vowel-consonant-vowel
sequences from a single speaker.

2.4. Audio acquisition

Audio was recorded concurrently with MRI acquisition at a
sampling frequency of 100 kHz inside the MRI scanner bore
using a fiber-optic microphone (Optoacoustics Ltd., Moshav
Mazor, Israel) and a custom recording and synchronization
setup [12]. Synchronization with the video signal was con-
trolled through the use of an audio sample clock derived from
the scanner’s 10MHz master clock and triggered using the
scanner RF master-exciter unblank signal. A post-processing
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(AkA)

(uku)

(iki)
Figure 2: Frames of rtMRI videos for speaker M3 producing [AkA], [uku], and [iki]. Time progresses from left to right. Coarticulation
affects the place of articulation for [k], yielding an anterior closure for [iki] and a posterior closure for [uku] and [AkA].

class sustained sounds
morphological
indicators

breathing, hold breath, clench teeth, tongue
out, tongue back, tongue tip up

vowel bi:t, bIt, beit, bEt, bæt, pA:t, b2t, bO:t, boUt,
bu:t, pUt, bô

"
d, æb2ta

consonant AfA, AvA, ATA, aDa, AsA, AzA, ASA, AZA, AhA,
ama, ana, aNa, ala, aôa

a[2] was the sustained and imaged vowel
Table 2: Speech materials for 3D volumetric MRI.

step down-sampled the audio to 20 kHz and enhanced the
recorded speech using customized de-noising methods (see [12]
for more detail). This attenuated the loud scanner noise in the
audio recording.

3. Potential research and development use
As Figure 1 illustrates, speakers have diverse vocal tract mor-
phology, which can bring about uniquely individual speech pat-
terns. Differences in craniofacial morphology (often osteologi-
cal) have long been measured for the purpose of understanding
their clinical significance with regard to, for instance, mastica-
tion [13, 14], swallowing [15], sleep apnea [16], and develop-
ment patterns [17]. A growing body of work has looked at the
significance of morphological variation to speech production.
Previous work with other MRI data-sets has studied speech-
relevant structural diversity displayed in terms of the size, shape
and relative proportions of the hard palate and posterior pharyn-
geal wall, aiming to characterize such differences [18], and also
to examine how they relate to speaker-specific articulatory and
acoustic patterns [19], and to explore the possibility of predict-
ing them automatically from the acoustic signal [20].

Our initial motivation for developing the USC Speech and
Vocal Tract Morphology MRI Database was to study how in-
dividual differences in vocal tract morphology are reflected in
the acoustic speech signal and what articulatory strategies are

adopted in the presence of morphological differences to pro-
duce speech sounds. The USC Speech and Vocal Tract Mor-
phology MRI Database has already been used to quantify differ-
ences among speakers in how much individual articulators (e.g.,
jaw versus tongue, jaw versus lips) contribute to linguistically
relevant constrictions in the vocal tract [21] and to examine the
acoustic effects of the shaping of the epilarynx across speak-
ers [22]. Such studies underscore the potential of the database
to help illuminate how and to what degree vocal tract morphol-
ogy may shape speech articulation and speech signal properties
within and across talkers.
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2× neutral
2× fast
2× clear
2× yell
2×whisper

Rainbow
Passage

When the sunlight strikes raindrops in the air, they act as a prism and form a rainbow. The rainbow is
a division of white light into many beautiful colors. These take the shape of a long, round arch, with
its path high above, and its two ends apparently beyond the horizon. There is, according to legend, a
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Your good pants look great.
However, your ripped pants look like a cheap version of a K-Mart special.
Is that an oil stain on them?

1 spontaneous
speech

What is your favorite music?
How do you like LA?
What is your favorite movie?
What are the best places you have been to?
What is your favorite restaurant?

1 picture
description

5 pictures

1 singing highest note
lowest note

1 miscellaneous trace palate with tongue tip
open mouth wide
swallow
vowel triangle (i.e., [i]-[a]-[u]-[i])

Table 3: speech materials for rtMRI
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relationship between skull morphology, masticatory muscle force
and cranial skeletal deformation during biting,” Annals of
Anatomy-Anatomischer Anzeiger, vol. 203, pp. 59–68, 2016.
[Online]. Available: http://dx.doi.org/10.1016/j.aanat.2015.03.
002

[14] B. R. Chrcanovic, M. H. N. G. Abreu, and A. L. N. Custódio,
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