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In speech production, the motor system organizes articulators such as the jaw, tongue, and lips into
synergies whose function is to produce speech sounds by forming constrictions at the phonetic pla-
ces of articulation. The present study tests whether synergies for different constriction tasks differ
in terms of inter-articulator coordination. The test is conducted on utterances [ApA], [AtA], [AiA],
and [AkA] with a real-time magnetic resonance imaging biomarker that is computed using a statisti-
cal model of the forward kinematics of the vocal tract. The present study is the first to estimate the
forward kinematics of the vocal tract from speech production data. Using the imaging biomarker,
the study finds that the jaw contributes least to the velar stop for [k], more to pharyngeal approxi-
mation for [A], still more to palatal approximation for [i], and most to the coronal stop for [t].
Additionally, the jaw contributes more to the coronal stop for [t] than to the bilabial stop for [p].
Finally, the study investigates how this pattern of results varies by participant. The study identifies
differences in inter-articulator coordination by constriction task, which support the claim that inter-
articulator coordination differs depending on the active articulator synergy.
VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5093538
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I. INTRODUCTION

An articulator synergy is a functional grouping of articu-
lators such as the jaw, tongue, and lips, whose coordinated
movements produce constrictions during speech, and which
instantiates a reduction in the number of independent degrees
of freedom for controlling a vocal tract movement (Turvey,
1977). Phonetic studies have shown that the coordination of
articulators differs depending on where in the vocal tract the
synergy produces a constriction. For instance, mechanical per-
turbations to jaw position during a bilabial stop induce com-
pensatory lip movement with no compensatory tongue
movement, whereas mechanical perturbations to jaw position
during a lingual constriction induce compensatory tongue
movement with no compensatory lip movement (Kelso et al.,
1984). Our previous study on unperturbed speech suggests
that healthy adult speakers of American English may use the
jaw more for bilabial stops, coronal stops, and palatal approxi-
mations than for velar stops and pharyngeal approximations
(Sorensen et al., 2016). Differences in inter-articulator

coordination by constriction task support the task-dependence
of articulator synergies (Latash, 2008).

The present study investigates the task-dependence of
articulator synergies by quantifying the percent contribution
of each articulator to narrowing or widening the vocal tract
at the synergy’s place of articulation. In the task dynamics
model of speech production (Saltzman and Munhall, 1989),
the percent contribution of each articulator in a synergy is
determined by assigning weights to the articulators. In con-
trast to studies that manually assign weights to the articula-
tors based on theoretical considerations (for example, see
Simko and Cummins, 2010, for an assignment of weights
based on articulator mass), the present study is the first to
obtain a quantitative readout of these weights from speech
production data.

Advances in magnetic resonance imaging (MRI) have
achieved a balance among the competing factors of tempo-
ral resolution, spatial resolution, and signal-to-noise ratio
that provides a rich source of speech production data for
the present study (Scott et al., 2014). Real-time MRI pulse
sequences and reconstruction techniques allow for the cap-
ture and visualization of the motion of the jaw, tongue, and
lips with 12 ms temporal resolution (Lingala et al., 2017;
Toutios and Narayanan, 2016). The present study uses
real-time MRI to quantify articulator synergies in terms of
the percent contribution of each articulator to producing
constrictions. The proposed measure of articulator syner-
gies is derived from in vivo MRI as a descriptor of articula-
tor synergies (i.e., a quantitative imaging biomarker, “an
objective characteristic derived from an in vivo image
measured on a ratio or interval scale as an indicator of nor-
mal biological processes,” Kessler et al., 2015; Sullivan
et al., 2015).
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The algorithm for computing the articulator synergy
biomarker involves a statistical model of the forward kine-
matics of the vocal tract. The forward kinematics relates
articulator parameters to constriction task variables, as in
the task dynamics model of speech production (Saltzman
and Munhall, 1989; see Lammert et al., 2013a, for a proce-
dure of estimating the forward kinematics of the vocal tract
from synthetic data). The forward kinematics has two parts:
the direct and differential kinematics. The direct kinematics
expresses the degree of constriction (i.e., constriction task
variable, measured in millimeters) at the phonetic places of
articulation as a function of the position and shape of artic-
ulators. This function is called the forward kinematic map.
The differential kinematics expresses change in the con-
striction task variables as a function of small increments of
articulator movement. This function is the Jacobian matrix
of the forward kinematic map. The algorithm uses the
Jacobian matrix of the forward kinematic map to compute
the percent contribution of each articulator to narrowing
or widening the vocal tract at the synergy’s place of
articulation.

The research goals of the present study are (i) to esti-
mate and evaluate the forward kinematics of the vocal tract
from MRI, (ii) to design and evaluate a biomarker of articu-
lator synergies based on the forward kinematics, and (iii) to
use the articulator synergy biomarker to test the task-
dependence of articulator synergies by determining whether
the relative contribution of the jaw, tongue, and lips differs
by constriction task.

The paper is organized as follows. Section II describes
the MRI experiment, scanner sequence, participant charac-
teristics, and method for manually annotating the start and
end time-points in the real-time MRI videos. Sections III
and IV describe the segmentation of articulator contours in
the images, and use the segmentation results to estimate
constriction task variables and parameters of articulator
shape and position, which are related by the forward kine-
matics of the vocal tract. Section V estimates the forward
kinematics and evaluates the model through cross-
validation. Section VI defines the articulator synergy bio-
marker. It evaluates the articulator synergy biomarker with
respect to bias and precision. Section VII tests the effect of
constriction task on the articulator synergy biomarker.
Confirming this effect shows that inter-articulator coordina-
tion differs by constriction task, supporting the task-
specificity of articulator synergies. Section VIII investi-
gates differences by participant in the effect of constriction
task on the articulator synergy biomarker as well as intra-
participant variability in biomarker values. Sections IX and
X offer discussion and conclusions.

II. MRI

A. Experiment

The data-set included eight (four male, four female)
speakers of American English (T€oger et al., 2017). Five par-
ticipants were native speakers of American English. None of
the participants reported speech pathology or abnormal hear-
ing. Table I provides participant characteristics. Each

participant took part in one session. The authors explained
the nature of the experiment and the protocol to the partici-
pant before each scan. The participant lay on the scanner
table in a supine position. The head was fixed in place by
foam pads inserted between the temple and the receiver coil
on the left and right sides of the head. The participant read
visually presented text from a paper card taped to the scan-
ner bore in front of the face. The speech corpus included
real-time MRI videos of the isolated utterances [ApA], [AtA],
[AkA], and [AiA] produced in an unrandomized sequence.
Although participants were instructed to produce a low back
unrounded vowel [A] and high front unrounded vowel [i],
there was some variability in whether the low vowel was the
front [a] or back [A] and whether or not the high vowel was
produced as a glide [j]. Participants produced the sequence
of utterances ten times. The authors removed the participant
from the scanner for a short break, and then repeated the
experiment. After completing the session, the speaker was
paid for participation in the study. The University of
Southern California (USC) Institutional Review Board
approved the data collection procedures.

Vocal tract constrictions were manually identified in the
real-time MRI videos. The video frames were inspected on a
computer monitor. Guided by graphical presentation of real-
time MRI video frames and auditory presentation of a
denoised speech audio signal recorded in the scanner bore,
the authors manually identified the intervals of time during
which the vocal tract produced the bilabial stop in [ApA],
coronal stop in [AtA], palatal approximation in [AiA], velar
stop in [AkA], and pharyngeal approximation in [AiA] (sec-
ond [A] used for pharyngeal approximation). The authors
annotated the frame number of the first and last frames in
which there was visible movement of the lips (for [ApA]) or
tongue (for [AtA], [AkA], and [AiA]).

B. Imaging parameters

Data were acquired on a Signa Excite HD 1.5 T scanner
(General Electric Healthcare, Waukesha WI) with gradients
capable of 40 mT/m amplitude and 150 mT/m/ms slew rate. A
custom eight-channel upper airway coil was used for radio fre-
quency signal reception. The coil had two four-channel arrays.
A real-time MRI pulse sequence based on a spiral fast gradient
echo pulse sequence was used. The real-time MRI pulse

TABLE I. Participant characteristics of the test-retest data-set.

Identification Age Gender State of origin Native language

F1 25 F Rhode Island American English

F2 28 F Texas American English

F3 24 F Nebraska American English

F4 29 F Korea Korean

M1 29 M Iowa American English

M2 27 M United Arab
Emirates

American English

M3 26 M Germany German

M4 39 M Greece Greek

Median: 28 4 male 5 American English

Range: 24–39 4 female 3 other
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sequence parameters were the following: 200 mm! 200 mm
field of view, 2.4 mm! 2.4 mm reconstructed in-plane spatial
resolution, 6 mm slice thickness, 6 ms repetition time (TR),
3.6 ms echo time (TE), 15" flip angle, 13 spiral interleaves
for full sampling. The scan plane was manually aligned to
the head. Images were retrospectively reconstructed to a
temporal resolution of 12 ms (6 ms TR times two spirals per
image, 83 frames per second). Reconstruction was per-
formed using the Berkeley Advanced Reconstruction
Toolbox (Uecker et al., 2015).

III. CONSTRICTION TASK VARIABLE MEASUREMENT

The contours of articulators were identified in the real-
time MRI videos and tracked automatically during vocal
tract constrictions (Bresch and Narayanan, 2009). The algo-
rithm was manually initialized with templates matching
vocal tract contours during the sounds [A], [i], [p], [t], [k]
(Fig. 1). If visual inspection revealed clear errors, then the
algorithm initialization was manually corrected and the con-
tours were re-submitted to the algorithm. This was repeated
as needed until no clear contour tracking errors remained.
See Fig. 1 for example segmentation results.

An algorithm automatically measured constriction task
variables at the phonetic places of articulation in each video
frame. As we use the term in this study, a constriction task
variable is defined as the shortest distance between opposing
structures at a given place of articulation. The opposing
structures were the upper and lower lips for [p] (bilabial con-
striction task variable), tongue and coronal place for [t]
(coronal constriction task variable), tongue and palatal place
for [i] (palatal constriction task variable), tongue and soft
palate for [k] (velar constriction task variable), and tongue
and rear pharyngeal wall for [A] (pharyngeal constriction

task variable). The contour tracking algorithm automatically
identified the upper lip, lower lip, tongue, hard palate, soft
palate, and rear pharyngeal wall (Bresch and Narayanan,
2009). The anterior 1/4 of the hard palate was the coronal
place of articulation. The posterior 1/2 of the hard palate was
the palatal place of articulation. The velar place was
bounded anteriorly by the anterior edge of the soft palate and
extended posteriorly over 1/8 of the total soft palate contour,
which included the oral, uvular, oropharyngeal, and nasal
surfaces of the soft palate (cf. gray soft palate contours in
Fig. 1). The pharyngeal place was the posterior pharyngeal
wall, bounded superiorly by the velopharyngeal port and
inferiorly by the larynx. Figure 2 illustrates the constriction
task variable measurements at the phonetic places of
articulation.

IV. GUIDED FACTOR ANALYSIS OF VOCAL TRACT
SHAPES

A. Objective of the guided factor analysis

The guided factor analysis of the present study was
motivated by the analysis of Maeda (1990), which extracts
factors of the jaw, tongue, and lip articulators (Maeda’s
“elementary articulators”) and factor scores that parameter-
ize how the position and shape of these articulators change
over time (Maeda’s “elementary gestures”). In this frame-
work, vocal tract movements are the sum of a few elemen-
tary gestures, which are factors in our analysis.

The objective of the guided factor analysis was to
parameterize the vocal tract contours X 2 Rn!2p, where n is
the number of images and p is the number of contour verti-
ces, as the linear combination of factors f1; f2;…; fq 2 R2p

such that each factor characterizes spatial variation in the

FIG. 1. (Color online) (a) Subject-
specific templates for [A], [i], [p], [t],
[k], which are automatically deformed
to fit the articulator contours in the
real-time magnetic resonance images.
(b) Articulator contour segmentation
of a sequence of real-time magnetic
resonance images acquired in the tran-
sition from [A] to [i] in [AiA]. Frame
rate downsampled for presentation.

FIG. 2. (Color online) Constriction task variable at the phonetic places of articulation in the transition from [A] to [i] in the sequence [AiA]. The phonetic places
of articulation (blue lines) are bilabial place, coronal place, palatal place, velar place, and pharyngeal place. Frame rate downsampled for presentation.
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position and shape of an articulator (specifically, the jaw,
tongue, lips). Prior to the factor analysis, the vocal tract con-
tours X were centered on zero. The time-varying coefficients
w#;1;w#;2;…;w#;p 2 Rn of the linear combination are factor
scores that characterize temporal variation in the position
and shapes of the articulators. Factor scores change from one
image to the next as the articulators move and change shape.
Thus, changes in the factor scores parameterize articulator
motion. The guided factor analysis is based on the approach
of Toutios and Narayanan (2015).

Factors f1; f2;…; fq 2 R2p are the columns of the
matrix F 2 R2p!q. Rows w1;#;w2;#;…;wn;# of the matrix
W 2 Rn!q contain the factor scores for images 1,2,…,n of
the real-time MRI data-set. Thus, the contour vertices xi,# for
the ith image of the real-time MRI data-set are approxi-
mately equal to the following linear combination of the
factors:

x̂i;# ¼ wi;#F
T (1)

¼ wi;1fT#;1 þ wi;2fT#;2 þ # # # þ wi;qfT#;q: (2)

The motion of the tongue and lips systematically co-
occurs with motion of the jaw due to mechanical constraints
and regularities in motor commands. For this reason, we
seek a factor that corresponds to the motion of the jaw along
with the concomitant motion of the tongue and lips.

The set of qjaw jaw factors Fjaw 2 R2p!qjaw parameter-
izes motion of the jaw along with concomitant motion of the
tongue, lips, and velum. The set of qtongue tongue factors
Ftongue 2 R2p!qtongue parameterizes motion of the tongue that
is independent of the jaw. The set of qlips lip factors Flips

2 R2p!qlips parameterizes motion of the lips that is indepen-
dent of the jaw. The set of qvelum velum factors Fvelum

2 R2p!qvelum parameterizes motion of the velum. The full set
of factors can be written as the block matrix F 2 R2p!q,
where q ¼ qjaw þ qtongue þ qlips þ qvelum,

F ¼ FjawjFtonguejFlipsjFvelum

! "
: (3)

The corresponding set of factor scores can be written as the
block matrix W 2 Rn!q, where q ¼ qjaw þ qtongue þ qlips

þ qvelum,

W ¼ WjawjWtonguejWlipsjWvelum

! "
: (4)

Section IV B is a preliminary technical note. Section
IV C derives the jaw factors. Section IV D derives the
tongue, lip, and velum factors. Section IV E derives the fac-
tor scores.

B. Preliminaries to the guided factor analysis

Different steps of the guided factor analysis focus on dif-
ferent articulators. The guided factor analysis uses a projec-
tion operator to set to zero the contour vertices of articulators
not under analysis in a given step of the analysis. For exam-
ple, in order to derive the matrix Xjaw 2 Rn!2p, which con-
tains only jaw contour vertices, the guided factor analysis sets
to zero the contour vertices (i.e., columns of X) of all non-jaw

articulators and leaves the contour vertices of the jaw
unchanged. Specifically, the non-jaw contour vertices are set
to zero by multiplying X by the diagonal projection matrix
Pjaw 2 R2p!2p. We have that pi,i¼ 1 if the ith column of X is
a jaw vertex. Otherwise, pi,i¼ 0. This projection operator sets
to zero the columns of X corresponding to non-jaw contour
vertices. If jaw contour vertices are in columns q1,q2,…,q‘ of
X, then the projection works out to the following:

Xjaw ¼ XPjaw

0

0

..

.

0

x1;q1
# # # x1;q‘

x2;q1
# # # x2;q‘

..

. ..
.

xn;q1
# # # xm;q‘

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{jaw contour vertices

0

0

..

.

0

2

666666664

3

777777775

¼ X

0

1

. .
.

1

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{columns q1;…;q‘

0

2

66666666664

3

77777777775

: (5)

Similarly, the matrices Xtongue;Xlips;Xvelum 2 Rn!2p focus
on the tongue and lip contours. Summing such matrices pro-
duces a matrix that corresponds to a set of articulators. For
instance, the matrix Xjaw;tongue;lips ¼ Xjaw þ Xtongue þ Xlips

corresponds to the jaw, tongue, and lips.

C. Jaw factors

We first obtained the factors Fjaw that capture the contri-
bution of the jaw to vocal tract shaping (see the jaw factor in
Fig. 3). We performed principal component analysis of
the jaw (i.e., mandible and chin, cf. Fig. 1) contour
vertices through eigendecomposition of the covariance
matrix Rjaw ¼ XT

jawXjaw=ðn' 1Þ into an orthogonal matrix
Qjaw 2 R2p!qjaw whose columns are the principal axes of
Xjaw and a diagonal matrix Kjaw 2 Rqjaw!qjaw whose diagonal
entries are the variances of Xjaw on the principal axes,

Rjaw ¼ QjawKjawQ'1
jaw: (6)

The principal axes ðqjawÞ#;1ðqjawÞ#;2;…; ðqjawÞ#;qjaw
and the

variances ðkjawÞ1;1; ðkjawÞ2;2;…; ðkjawÞqjaw;qjaw
on these axes

capture the direction and variance of jaw motion. The jaw
factors ðf jawÞ#;1; ðf jawÞ#;2;…; ðf jawÞ#;qjaw

capture this jaw
motion along with concomitant tongue and lip motion. The
jaw factors are the columns of matrix Fjaw 2 R2p!qjaw ,

Fjaw ¼ Rjaw;tongue;lipsQjawK'1=2
jaw : (7)

Column ðf jawÞ#;i is the vector of covariances between the

jaw, tongue, and lip contour vertices and the z-scored com-

ponent scores XðqjawÞ#;i=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkjawÞi;i

q
for the ith jaw principal

component. Thus, the factors capture motion of the tongue
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and lips, which accompanies the motion of the jaw. Note

that the matrix K'1=2
jaw is the inverse of the principal square

root of Kjaw. Postmultiplying Rjaw;tongue;lipsQjaw by K'1=2
jaw z-

scores the component scores XQjaw, whose covariances with
the jaw, tongue, and lip contour vertices Xjaw,tongue,lips are
the entries of the jaw factors Fjaw.

The column space Col(Fjaw) of Fjaw is a qjaw-dimensional
subspace of R2p. Variance within Col(Fjaw) captures jaw
contour motion and concomitant tongue and lip motion [see
Fig. 4(a)]. The projection X̂ of the data X on the space
Col(Fjaw) is obtained through the Moore-Penrose pseudoin-
verse Fþjaw of Fjaw,

X̂ ¼ XFjawFþjaw: (8)

The null space Null(Fintercal
jaw ) is a (2p ' qjaw)-dimensional

subspace of R2p. Variance within Null(Fintercal
jaw ) captures

velum motion along with the part of the tongue and lip
motion that is independent of jaw motion. Section IV D
describes the factors that characterize the variance of the
tongue, lips, and velum within Null(Fintercal

jaw ).

D. Tongue, lip, and velum factors

This section describes the procedure for obtaining the
factors Ftongue, which capture the contribution of the

tongue to vocal tract shaping (see the tongue factors in
Fig. 3). The projection ~X of the data matrix X on the space
Null(Fintercal

jaw ) is the contour vertex motion that is indepen-
dent of the jaw,

~X ¼ XðIp ' FjawFþjawÞ (9)

¼ X' X̂: (10)

Specifically, ~X is independent of the jaw in the sense that it
is statistically independent of X̂.

We performed principal component analysis of the
tongue contour vertices through eigendecomposition of the

covariance matrix ~Rtongue ¼ ~X
T
tongue

~Xtongue=ðn' 1Þ into an

orthogonal matrix Qtongue, whose columns are the principal

axes of ~Xtongue, and a diagonal matrix Ktongue, whose diago-

nal entries are the variances of ~Xtongue on the principal axes,

~Rtongue ¼ QtongueKtongueQ'1
tongue: (11)

The principal axes ðqtongueÞ#;1; ðqtongueÞ#;2;…; ðqtongueÞ#;qtongue
and

the variances ðktongueÞ1;1; ðktongueÞ2;2;…; ðktongueÞqtongue;qtongue
on

these axes capture the direction and variance of tongue motion,
respectively.

Column ðf tongueÞ#;i of the tongue factor matrix Ftongue is the
vector of covariances between the tongue contour vertices and

FIG. 3. (Color online) Factors obtained
for one participant with one jaw factor,
four tongue factors, two lip factors, and
one velum factor (qjaw¼ 1, qtongue¼ 4,
qlip¼ 2, qvelum¼ 1). Each factor charac-
terizes spatial variation in the position
and shape of an articulator. The jaw
factor captures jaw contour motion and
concomitant tongue and lip motion. The
tongue, lip, and velum factors capture
tongue and lip contour motion that is
not concomitant with jaw motion. The
articulator contours in a given real-time
magnetic resonance image are parame-
terized as the linear combinations of the
factors. For a given participant, the
coefficients of this linear combination
change from image to image as the
articulators move, while the factors
remain constant.

FIG. 4. (Color online) Percent variance explained (a) for the mandible and chin contours for each number of jaw factors, (b) for the tongue contour for differ-
ent numbers of jaw and tongue factors, and (c) for the lip contours for different numbers of jaw and lip factors. Results averaged over participants.
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the z-scored component scores XðqtongueÞ#;i=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðktongueÞi;i

q
for

the ith tongue principal component,

Ftongue ¼ ~RtongueQtongueK
'1=2
tongue: (12)

The column space Col(Ftongue) of Ftongue is a qtongue-
dimensional subspace of R2p. Variance within Col(Ftongue)
captures tongue contour motion that is not concomitant with
jaw motion [see Figs. 4(b) and 4(c)]. The procedure for
deriving lip and velum factors is the same as for the tongue
factors except that Xlips or Xvelum is substituted for Xtongue.

E. Factor scores

According to Eq. (1), the data matrix X is parameterized
as the matrix product WFT. Sections IV C and IV D specify
the factors F. This section derives the factor scores W from
the factors F and the data matrix X,

W ¼ XðFTÞþ: (13)

Superscript “þ” denotes the Moore-Penrose pseudoinverse.
In image i of the real-time MRI data-set, the vocal tract con-
tours xi,# is approximately equal to the linear combination
wi;1fT1 þ wi;2fT2 þ # # # þ wi;qfTq . The factor scores wi,# are the
coefficients of the linear combination. Variance of the factor
scores parameterizes the temporal variability of vocal tract
shape.

V. FORWARD KINEMATIC MAP OF THE VOCAL TRACT

A. Estimation of the direct and differential kinematics

The forward kinematic map is the function that maps
the shape and position of the articulators (here, parameter-
ized by factor scores) to the corresponding constriction task
variables at the phonetic places of articulation (Lammert
et al., 2013a). Although the function is nonlinear, in the
neighborhood of a given point wj,# the function can be linear-
ized to have the form of a linear system of equations.
Specifically, the linearized forward kinematic map is the
function G, where w 2 Rq is a vector of q factor scores and
z 2 Rm is a vector of constriction task variables at the m
phonetic places of articulation,

z ¼ GðwÞ 1
w

% &
(14)

¼ lðwÞ JðwÞ
! " 1

w

% &
: (15)

The first column g #;1 of the matrix GðwÞ 2 Rm!ðqþ1Þ is the
vector lðwÞ 2 Rm of intercepts for each constriction task
variable in the neighborhood of w. The remaining columns
g #;2ðwÞ;…; g #;qþ1ðwÞ define the Jacobian J(w) of the forward
kinematic map in the neighborhood of w.

JðwÞ ¼

@z1

@w1
# # # @z1

@wq

..

. . .
. ..

.

@zm

@w1
# # # @zm

@wq

2

6666664

3

7777775
: (16)

The Jacobian of the forward kinematic map indicates how
much the constriction task variables change as the result of a
small change in factor scores. The forward kinematic map is
estimated using weighted least squares. The estimator ĝ i;# of
row g i,# of G is defined locally at point w as the function that
minimizes the weighted sum of squared errors (SSE)

SSE ¼ ðz#;i ' ẑ#;iÞTCðwÞðz#;i ' ẑ#;iÞ (17)

for i¼ 1,2,…,m, where z#;i 2 Rn is the vector of n constric-
tion task variables measured at the ith constriction location;
n is the number of images in the data-set; ẑ#;i 2 Rn is the
corresponding vector of n estimated constriction task varia-
bles at the ith constriction location; and entry ck,k of the diag-
onal weight matrix C(w) is defined by the tri-cubic kernel
function K centered in the neighborhood of w,

ck;kðwÞ ¼ Kðw;wk;#Þ (18)

¼ 1' kwk;# 'wk
h

' (3
 !3

; kwk;# 'wk< h

0; otherwise:

8
>><

>>:

(19)

The parameter h is the radius of a spherical neighborhood
centered on w containing exactly bf nc data-points, where f
2 (0,1] and n is the number of data-points. The parameter h
is found using the k-nearest neighbors algorithm, where
k ¼ bf nc. Equation (18) has that the forward kinematic map
is computed within this neighborhood with points close to
the center w contributing more to the forward map estimator
than points at the edge of the neighborhood. The expression
for the estimator of the forward kinematic map in the neigh-
borhood of w is the following:

ĜðwÞ ¼ ðWTCðwÞWÞ'1WTCðwÞZ: (20)

This estimator is a modified version of the standard linear
regression estimator ðWTWÞ'1WTZ in which data-points
close to w are assigned greater weight by the matrix C. This
results in a forward kinematic map whose form differs
depending on where it is evaluated in the space of factor
scores.

B. Cross-validation of the direct and differential
kinematics

We evaluated the direct and differential kinematics with
the median error and the 10th–90th percentile error range.
Error of the direct and differential kinematics is an important
parameter, as the forward kinematics underlies the technical
performance of the articulator synergy biomarker. The
median error and the 10th–90th percentile error range were
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computed using tenfold cross-validation. In each fold, the
cross-validation assigned 90% of the data-point indices to
the training set S and 10% to the test set T . No two folds
had overlapping test sets.

The medianG;k for the forward kinematic map G at the
kth phonetic place of articulation reflects deviation in the
estimated constriction task variables ẑ#;k ¼ Ĝðwj;#Þ½ 1 wT

j;# *
T

from the observed constriction task variables z#,k,

medianG;k ¼ medianð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzj;k ' ẑj;kÞ2

q
Þ; for j 2 T : (21)

The medianJ;k for the Jacobian matrix J of the forward kine-
matic map at the kth phonetic place of articulation reflects
deviation in the estimated finite differences in constriction
task variables Dẑ#;k ¼ Ĵðwj;#ÞDwj;# from the observed finite
differences in constriction task variables Dz#,k,

medianJ;k ¼ medianð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDzj;k ' Dẑj;kÞ2

q
Þ; for j 2 T ;

(22)

where the finite difference Dzj,k is obtained by the central
difference formula,

Dzj;k ¼ ðzjþ1;k ' zj'1;kÞ=2: (23)

The evaluation was performed for scale parameter f in the
range of 0.2–0.9 (i.e., for neighborhoods containing 20%–90%
of training data-points). For a given f-value and phonetic place
of articulation, the tenfold cross-validation produced ten
medianG;k values and ten medianJ;k values. The reported
medianG;k and medianJ;k values are the medians of these ten

values. The results reported in this section were obtained with
one jaw factor, four tongue factors, and two lip factors.

The median error of the forward kinematic map was
smaller than the 2.4 mm in-plane spatial resolution of the real-
time MRI pulse sequence when 20%–90% training data-
points were in the neighborhood (i.e., for all f 2 [0.2,0.9]; see
Fig. 5). The median error was smaller than the standard devia-
tion of the observed constriction task variables for all partici-
pants and for all neighborhood sizes.

The median error of the Jacobian matrix was smaller than
the 2.4 mm in-plane spatial resolution of the real-time MRI
pulse sequence when 20%–90% training data-points were in
the neighborhood (i.e., for all f 2 [0.2,0.9]; see Fig. 5). For
many participants, the median error approached the standard
deviation of the frame-to-frame finite differences in constriction
task variable, especially for the velar and pharyngeal places of
articulation. The reason for this is that error for the Jacobian
matrix was small, but the frame-to-frame differences in con-
striction task variables varied over a small range to begin with.

In sum, the error of the forward kinematic map is small
enough to reliably quantify speech behavior for the purpose
of the present study. Whether the error of the Jacobian
matrix is small enough to reliably quantify speech behavior
was quantified through the bias and precision of the articula-
tor synergy biomarker, a topic taken up in Sec. VI.

VI. ARTICULATOR SYNERGY BIOMARKERS

A. Biomarker definition

In the neighborhood of w(t), the Jacobian J(w(t)) of the
forward kinematic map provides the following relation

FIG. 5. (a) Median error (solid line) and 10th–90th percentile error range (shaded) of the forward kinematic map estimator of constriction task variables. (b)
Median error (line) and 10th–90th percentile error range (shaded) of the Jacobian matrix estimator of frame-to-frame finite differences in constriction task var-
iables. Data-points are the errors computed over all ten folds of cross-validation. Neighborhood size is given as percentage of training data-points. The stan-
dard deviation of observed (frame-to-frame finite differences in) constriction task variables is indicated as a dashed line whenever the standard deviation is
small enough to fit within the y-axis limits.
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between change _zðtÞ in constriction task variables and
change _wðtÞ in articulator shape and position:

ðT

0

_zðtÞdt¼
ðT

0

JðwðtÞÞ _wðtÞdt¼
Xq

k¼1

ðT

0

JðwðtÞÞPk _wðtÞdt:

(24)

Time 0 is the temporal onset of a constriction, time T is the
temporal offset of the subsequent release (see Fig. 6), q is
the number of factors, and the q! q diagonal projection
matrix Pk has the (k,k)-entry equal to unity and all other
entries equal to zero, breaking the integral down into the
contributions of each factor score. Term k of the outer sum-
mation is the theoretical contribution of factor f#,k to elapsed
change in constriction task variables z over the time-course
of a constriction.

Since real-time MRI provides a discretized sequence of
images, the constriction task variables z and factor scores
w are discrete-time signals. The discrete-time version of Eq.
(24) is the following:

XN

j¼0

Dzj;# ¼
XN

j¼0

Jðwj;#ÞDwj;# ¼
Xq

k¼1

XN

j¼0

Jðwj;#ÞPkDwj;#:

(25)

Sample 0 is the temporal onset of a constriction, and sam-
ple N is the temporal offset of the subsequent release. As in
the continuous-time Eq. (24), term k of the outer summa-
tion is the contribution of factor f#,k to elapsed change in
constriction task variables z over the time-course of a
constriction.

The discrete-time signal kU;‘½n* is the cumulative sum of
contributions of the articulator whose factor indices are in
the set U to narrowing or widening the ‘th constriction task
variable z‘,

kU;‘ n½ * ¼
X

k2U

Xn

j¼0

j‘;#PkDwj;#: (26)

The set U contains the indices of factors corresponding to
the target articulator. For example, when the numbers of fac-
tors are qjaw¼ 1, qtongue¼ 4, qlip¼ 2, and qvelum¼ 1, then
U ¼ f1g is the jaw; U ¼ f2; 3; 4; 5g is the tongue; U
¼ f6; 7g is the lips; and U ¼ f8g is the velum. If Nþ 1 is
the number of real-time magnetic resonance (MR) images
acquired during a single utterance, then the integer n starts at
0 (i.e., the temporal onset of a constriction) and increases to
N (i.e., the temporal offset of the subsequent release). As n
increases from the onset 0 of a constriction to the offset N of
the subsequent release, the signal kU;‘½n* dips to a minimum
at the time-point of greatest constriction and then rises back
up during the release (cf. Fig. 6).

Let J be the set of jaw factor indices and E be the set of
lip or tongue factor indices. Specifically, the set E contains
lip factor indices for the bilabial place of articulation and
tongue factor indices for the coronal, palatal, velar, and pha-
ryngeal places of articulation. We define the articulator syn-
ergy biomarker !‘ for place of articulation ‘ as the range of
kJ ;‘½n* divided by the range of kJ ;‘½n* þ kE;‘½n* over all sam-
ples n 2 {0,1,2,…,N}. Range is computed as the difference
between the 90th percentile P90 and 10th percentile P10.
Thus, the articulator synergy biomarker !‘ is the following
percentage:

!‘ ¼ 100! P90 kJ ;‘ n½ *ð Þ'P10 kJ ;‘ n½ *ð Þ
P90 kJ ;‘ n½ * þ kE;‘ n½ *ð Þ'P10 kJ ;‘ n½ * þ kE;‘ n½ *ð Þ

:

(27)

The articulator synergy biomarker !‘ is the percent contribu-
tion of the jaw to narrowing and widening the vocal tract for
a constriction. The quantity 1 - !‘ is the percent contribution
of the lips (for the bilabial place) or tongue (for the coronal,
palatal, velar, and pharyngeal places) to a constriction.
Through Eq. (26), these quantities are based on the kine-
matic relations between factor scores and constriction task
variables (i.e., the Jacobian of the forward kinematic map),
and how the factor scores and the constriction task variables
evolve in time.

B. Bias

This section evaluates the bias of the articulator synergy
biomarker. Bias is the difference between the expected value
of a measurement and its true value. The true value of the
articulator synergy biomarker is unknown for any given
MRI scan of a particular subject. For this reason, the present
study designed a computer simulation method that generated
synthetic vocal tract movements for which the true value of
the biomarker could be controlled. By varying the true bio-
marker value over the range 0%–100% and comparing to the
measured biomarker value, the present study estimated the
bias of the articulator synergy biomarker.

The synthetic data-set was generated through simulation
using the n!m matrix Z of constriction task variables at m
places of articulation in the n observed MR images (Sec.

FIG. 6. (Color online) Quantitative readout of the contributions of the jaw
(dark bar) and tongue (light bar) to a palatal approximation for [i] during the
transition from [A] to [i] and back to [A] in the sequence [AiA]. Time runs
left to right. Vertical length of the bars indicates the total elapsed change in
constriction task variable at the palatal place. The breakdown into dark and
light parts indicates the contribution of the jaw and tongue to the constric-
tion, respectively. From the onset of movement to the time of maximum
constriction, the jaw and tongue produce a narrowing at the palatal place,
and constriction task variable decreases to a minimum. After achieving max-
imum constriction, the jaw and tongue widen the constriction task variable
at the palatal place, and constriction task variable increases. See Sec. II A
for operational definitions of movement onset and movement offset.
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III), the 2p ! q matrix of factors F (Sec. IV, parameters:
qjaw¼ 1, qtongue¼ 4, qlips¼ 2), and the forward kinematic
map (Sec. V, parameter f¼ 1.0). The synthetic data-set con-
sisted of vocal tract contours from 40 utterances (10 repeti-
tions each of [ApA], [AtA], [AiA], [AkA]). Each utterance
started from the open vocal tract posture characteristic of an
initial vowel [A]. The utterance consisted of two movements.
The first movement was the oral constriction for [p], [t], [k],
or [i]. The second movement was the pharyngeal constriction
that returned the vocal tract to the open posture characteristic
of the vowel [A] (Wood, 1979).

Following task dynamics (Saltzman and Munhall, 1989),
change in the vector z of constriction task variables evolves
according to the following equation for time t in the interval
[t0, t0 þ T), where t0 is the start time and T is the duration:

€z ¼ 'KðtÞ z' z0ðtÞ½ * ' BðtÞ _z: (28)

The vector z0 contains m constriction task variable targets,
where m is the number of places of articulation. The matrices
K and B are diagonal matrices of m stiffness and damping
coefficients, respectively. The parameters z0, K, and B are
constant for time t in [t0,t0 þ T/2) and for time t in [t0 þ T/2,
t0 þ T), with the parameters changing at the midpoint t0
þ T/2 separating the two movements. When the constric-
tion is for task variable zi, then the parameters take on the
following values, where x is the natural frequency of the
gesture: target z0i¼ 0 mm for [p],[t], [k] and z0i¼ 2.38 mm
for [i],[A]; stiffness kii¼x2; damping bii¼ 2x; and kjj

¼ bjj¼ 0 for j 6¼ i. The natural frequency x¼ 10 Hz and
simulation duration T¼ 1 s were set arbitrarily, as the rela-
tive usage of the jaw, tongue, and lips does not depend on
the timescale of the simulation.

Given model parameters K, B, z0, and initial conditions
z(t0), _zðt0Þ, the solution z(t) to Eq. (28) is unique for time t in
[t0, t0 þ T). The unique solution z(t) maps to many paths
w(t) of factor scores. The forward kinematic map G, its
Jacobian J(w), and the set of weights v11,v22,…,vqq on the q
factors determine one particular path w(t) out of the many

possible paths as the solution to the following equation for
time t in [t0, t0 þ T):

€w ¼ JþðwÞð'BJðwÞ _w 'KðGðwÞ ' z0ÞÞ

' JþðwÞ _Jðw; _wÞw: (29)

This follows from the change of variables z ¼ GðwÞ; _z
¼ JðwÞ _w; €z ¼ JðwÞ€w þ _Jðw; _wÞ _w, and the weighted
Jacobian pseudoinverse Jþ ¼ V'1JTðJV'1JTÞ'1, where V is
the diagonal matrix of weights v11,v22,…,vqq for the q factors
(Saltzman and Munhall, 1989).

Due to its deterministic nature, the dynamical system
generates vocal tract contours with a covariance structure
that does not closely resemble real data. In order to demon-
strate that the factors F could be recovered from synthetic
vocal tract contours with a covariance structure similar to
that of actual segmentations of real-time MR images, we
estimated factors F̂ from a synthetic data-set of vocal tract
contours X ¼ NF, where N is a matrix whose rows are sam-
ples from the multivariate normal distribution with mean
and covariance estimated from observed factor scores.

Numerical simulation of the dynamical system gener-
ated paths w(t) of factor scores that solved Eq. (29) for each
of the 40 utterances. True biomarker values were computed
using the simulated paths w(t) and the Jacobian matrix J
used for the simulation according to Eqs. (26) and (27).
Measured biomarker values were extracted from the syn-
thetic vocal tract contours x(t)¼Fw(t) using the same proce-
dure as for real data (i.e., without knowledge of the
parameters used to generate them).

The simulation was repeated 15 times, each with a dif-
ferent value of the jaw weight v11 in the range of 10'3–102.
This generated a range of true biomarker values from 0% to
100%. Figure 7(a) demonstrates an inverse relation between
jaw weight and biomarker value. The measured biomarker
values closely matched the true biomarker values over the
range from 0% to 100% [cf. Figs. 7(b) and 7(c)]. A two-
sided paired-sample t-test detected no systematic bias
(p¼ 0.80). The 95% limits of agreement are '1.03% and

FIG. 7. (Color online) (a) Relationship between measured biomarker values and theoretical jaw weight parameter values. The jaw weight parameter controls
jaw usage in the dynamical systems simulation of vocal tract movement. Large biomarker values close to 100% correspond to small jaw weight parameters
(indicating great jaw usage). Small biomarker values close to 0% correspond to large jaw weight parameters (indicating little jaw usage). (b) Relationship
between the true and measured biomarker values. True values were obtained from synthetic data generated in a dynamical systems simulation. (c) Bland-
Altman diagram graphs the difference between true and measured biomarker values (y axis) against the average of the true and measured biomarker values (x
axis). Ninety-five percent of the measured biomarker values differed from the true value by '1.03%–0.68%. Measurement bias (-0.17%) was not significantly
different from zero.
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0.68%, meaning that most errors are contained in the interval
['1.03%,0.68%].

C. Precision

This section evaluates the precision of the articulator
synergy biomarker. Precision is the agreement between rep-
licate measurements of a vocal tract constriction by the same
participant for the same constriction task (Kessler et al.,
2015; Sullivan et al., 2015). The same-day test-retest repeat-
ability experiment evaluated the repeatability of the articula-
tor synergy biomarker under variable conditions of MRI
operator variability, image analysis variability, and short-
term physiological variability (T€oger et al., 2017). MRI
operator variability includes subject positioning within the
scanner bore and scan plane localization. Image analysis var-
iability includes variability in the manual step of time-point
annotation and the manual initialization of the segmentation
algorithm. Short-term physiological variability includes
same-day scan-to-scan variability in speech motor control.
Precision is an important parameter as it establishes a limit
on effect size and group differences that the method can
resolve.

Study participants repeated the MRI experiment for a
total of two MRI scans. Agreement between scan 1 and scan
2 was quantified using the intraclass correlation coefficient
(ICC). The ICC is a quantitative measure of test-retest
repeatability for articulator synergy biomarkers. The ICC is
the ratio of inter-participant variability to total variability.
The greater the inter-participant variability compared to total
variability, the greater the reliability because random error is
smaller relative to the variance of the articulator synergy
biomarker between experiment participants. On the basis of
a recent review (LeBreton and Senter, 2008), ICC values
were categorized as poor (0.00–0.30), weak (0.31–0.50),
moderate (0.51–0.70), strong (0.71–0.90), and very strong
(0.91–1.00). The ICC was computed using a linear mixed
effects model fitted with the package lme4 (Bates et al.,
2015) in R (R Development Core Team, 2008). Consider the
sample of n¼ 8 participants, each with k¼ 20 repeated mea-
surements of articulator synergy (ten from xcan 1, ten from
scan 2). The articulator synergy biomarker !ij for replicate
measurement j and participant i was

!ij ¼ mþ pi þ eij; (30)

where m was the group mean, pi was the random intercept
for participant i, and eij was the intra-participant error. The
random effects pi and eij were independently and identically
distributed with mean 0 and the inter-participant variance r2

p
and intra-participant variance r2

e to be estimated from the
data using the restricted maximum likelihood procedure.
The ICC is the proportion of variance in the articulator syn-
ergy biomarker value due to biological variation among par-
ticipants, compared to the total variance of the articulator
synergy biomarker,

ICC !ð Þ ¼
r̂2

p

r̂2
p þ r̂2

e

: (31)

If the ICC is close to one, variance in the articulator synergy
biomarker mostly reflects variability among participants. If
the ICC is close to zero, then variability among participants
accounts for little of the total variance in the articulator syn-
ergy biomarker.

The repeatability of the articulator synergy biomarker
was evaluated for different parameterizations. Parameters
include: imaging parameters of the scanner pulse sequence,
image reconstruction parameters, the number of jaw, tongue,
and lip factors, and the neighborhood size for the forward
kinematic map estimator. We investigated how varying
the number of factors and the neighborhood size affected
repeatability, keeping the pulse sequence and reconstruction
algorithm constant. The reason that the present study investi-
gated parameters of the statistical analysis and did not inves-
tigate parameters of image acquisition and reconstruction
was that the statistical analysis directly related to the novel
proposal of the present study, namely, estimating the for-
ward kinematic map from MRI. Image acquisition and
reconstruction was only indirectly related to this aim.
Nevertheless, repeatability will depend on imaging parame-
ters, and if different imaging parameters are used for future
studies on the articulator synergy biomarker, the repeatabil-
ity of the biomarker should be evaluated before drawing sci-
entific conclusions.

Figure 8 shows the repeatability of the articulator syn-
ergy biomarker for different numbers of jaw, tongue, and lip
factors. Regardless of the neighborhood size used for the for-
ward kinematic map estimator, the error of the estimator was
well in the subvoxel range (cf. Sec. V B). For this reason,
neighborhood size was fixed at 70% of training data-points.

FIG. 8. (Color online) Comparison of ICCs for different numbers of jaw factors (color) and different numbers of tongue and lip factors (x axis) for the bilabial
stop [p], coronal stop [t], palatal approximation [i], velar stop [k], and pharyngeal approximation [A].
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The images of participant F3 were excluded from the repeat-
ability analysis due to poor image quality in the second scan.

Repeatability of the articulator synergy biomarkers
ranged from poor to strong over the wide range of factor
analysis parameterizations tested. The bilabial stop had mod-
erate to strong repeatability (range: 0.6–0.71, median: 0.68).
The coronal stop had poor to moderate repeatability (range:
0.21–0.52, median: 0.36). The palatal approximation had
moderate repeatability (range: 0.54–0.65, median: 0.58). The
velar stop had weak to moderate repeatability (range:
0.31–0.6, median: 0.44). The pharyngeal approximation had
poor to weak repeatability (range: 0.22–0.48, median: 0.36).

The range of ICC values obtained for the coronal stop,
velar stop, and pharyngeal approximation included some
ICC values in the poor to weak range. The reason for this
may be different for the different constriction tasks. For the
velar stop, the total variance of the biomarker is small (inter-
quartile range: 7.3%–24%). Even if the intra-participant var-
iance is small to begin with, the intra-participant variance
makes up a substantial part of the total variance (see the his-
tograms in Fig. 9). In contrast, for the coronal stop and pha-
ryngeal approximation, the total variance of the biomarker is
large (coronal stop inter-quartile range: 44%–64%; pharyn-
geal approximation inter-quartile range: 17%–37%), sugges-
ting that intra-participant variance is substantial (see the
histograms in Fig. 9).

Although the velar stop and pharyngeal approximation
may not involve a very great contribution of the jaw, the
number of jaw factors nevertheless affects ICC (see panels
“velar” and “pharyngeal” of Fig. 8). This is due to the fact
that using more jaw factors increases the variance of the
tongue that is explained by jaw factors [cf. Fig. 4(b)], and
some of this variance may reflect the performance of the
velar stop and pharyngeal approximation.

VII. TESTING THE TASK-SPECIFICITY OF
ARTICULATOR SYNERGIES

The present study tested the task-dependence of articu-
lator synergies by determining whether the relative contribu-
tion of the jaw, tongue, and lips differs by constriction task
using a linear mixed effects model fitted with the package
lme4 (Bates et al., 2015) in R (R Development Core Team,
2008). Specifically, the present study tested the null

hypotheses that there are no pairwise differences in articula-
tor synergy biomarker values between constriction tasks.

Consider the sample of n¼ 800 articulator synergy bio-
marker values (eight participants ! five constriction tasks
! ten repeated measurements of the articulator synergy bio-
marker ! two scans). Let yi,j,k,‘ be the biomarker value for
constriction task i, participant j, and replicate measurement k
from scan ‘ (i.e., scan 1 or scan 2). The linear mixed effects
model of yi,j,k,‘ is

yi;j;k;‘ ¼ mþ bi þ pj þ c‘ þ qi;j þ rj;‘ þ ei;j;k;‘; (32)

where m is the baseline mean, bi is the fixed effect for con-
striction task, pi is the random intercept for participant i, c‘ is
the fixed effect for scan number, qi,j is the by-participant ran-
dom slope for constriction task, rj,‘ is the by-participant ran-
dom slope for scan number, and ei,j,k,‘ is the intra-participant
error. Multiple comparisons are corrected for using Tukey’s
range test with the package multcomp (Hothorn et al., 2008)
in R (R Development Core Team, 2008). This section reports
adjusted p-values. See Table II for results.

The coronal stop had 32% larger biomarker values than
the bilabial stop (z¼ 6.8, p¼ 4.3! 10'11), 18% larger bio-
marker values than the palatal approximation (z¼ 4,
p¼ 4.5! 10'4), 39% larger biomarker values than the velar
stop (z¼ 8.5, p¼ 1.1! 10'16), and 28% larger biomarker
values than the pharyngeal approximation (z¼ 6.6,
p¼ 3.9! 10'10). In addition to having 18% smaller bio-
marker values than the coronal stop (see immediately

FIG. 9. (Color online) Sample distribution of the articulator synergy biomarker for bilabial stop [p], coronal stop [t], palatal approximation [i], velar stop [k],
and pharyngeal approximation [A]. The biomarker indicates the percent of a constriction that was produced by the jaw. A value of 0% indicates that lip or
tongue motion produced the entire constriction, whereas a value of 100% indicates that jaw motion produced the entire constriction. Sample distribution by
participant shown with a different color for each participant.

TABLE II. Results for statistical tests of the null hypothesis that the contrast
is zero. Rows indicate separate tests. p-values corrected for multiple com-
parisons with Tukey’s range test (adjusted p-values reported).

Contrast Estimate (%) z p

Bilabial stop-coronal stop '32 '6.8 4.3! 10'11

Bilabial stop-palatal approximation '14 '2.1 0.21

Bilabial stop-velar stop 6.4 1.2 0.7

Bilabial stop-pharyngeal approximation '4.9 '0.86 0.89

Coronal stop-palatal approximation 18 4 4.5! 10'4

Coronal stop-velar stop 39 8.5 1.1! 10'16

Coronal stop-pharyngeal approximation 28 6.6 3.9! 10'10

Palatal approximation-velar stop 20 5.2 1.8! 10'6

Palatal approximation-pharyngeal

approximation

9.1 3.5 0.0042

Pharyngeal approximation-velar stop 11 3.4 0.0049
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above), the palatal approximation had 20% larger biomarker
values than the velar stop (z¼ 5.2, p¼ 1.8! 10'6) and 9.1%
larger biomarker values than the pharyngeal approximation
(z¼ 3.5, p¼ 0.0042). The velar stop had 11% smaller bio-
marker values than the pharyngeal approximation (z¼ 3.4,
p¼ 0.0049).

We infer that the jaw contributed significantly more to
the coronal stop than to the bilabial stop, palatal approxima-
tion, velar stop, and pharyngeal approximation, the jaw con-
tributed significantly more to the palatal approximation than
to the velar stop and pharyngeal approximation, and the jaw
contributed significantly less to the pharyngeal approxima-
tion than to the velar stop. We reject the null hypothesis that
the articulator synergy biomarker does not differ by constric-
tion task. Synergies differ in terms of inter-articulator coor-
dination depending on the constriction task (see Fig. 10 for
summary).

The sample distribution of the articulator synergy bio-
marker for the velar stop had small dispersion about a dis-
tinct peak at 10% (median: 12%, inter-quartile range:
7.3%–24%; see histograms in Fig. 9). The sample distribu-
tion of the articulator synergy biomarker for the coronal stop
had a distinct peak at 60% (median: 56%, inter-quartile
range: 44%–64%; see histograms in Fig. 9). The distinctly
peaked sample distributions of the articulator synergy bio-
markers for the coronal stop and velar stop likely contributed
to the statistically significant bilabial stop-velar stop, coronal
stop-palatal approximation, coronal stop-velar stop, palatal
approximation-velar stop, palatal approximation-pharyngeal
approximation, velar stop-pharyngeal approximation, and
coronal stop-pharyngeal approximation contrasts.

In order to determine whether the results reported above
depended on the choice of a particular number of jaw,
tongue, and lip factors or on the choice of a particular neigh-
borhood size for the forward kinematic map estimator, we
repeated the statistical analysis with different parameter val-
ues (number of jaw factors: 1,2,3; number of tongue factors:

4,6,8; number of lip factors: 2,3; neighborhood size:
20%–90% in 10% steps). The articulator synergy biomarker
was greater for the coronal stop than for the bilabial stop in
96/96 cases (100%), palatal approximation in 32/96 cases
(33%), velar stop in 88/96 cases (92%), and pharyngeal
approximation in 83/96 cases (86%). The articulator synergy
biomarker was greater for the palatal approximation than for
the velar stop in 71/96 cases (74%) and pharyngeal approxi-
mation in 65/96 cases (68%). The articulator synergy bio-
marker was greater for the pharyngeal approximation than
for the velar stop in 25/96 cases (26%). Overall, these results
support the inference that the jaw contributed significantly
more to the coronal stop than to the bilabial stop and velar
stop, and the jaw contributed significantly more to the palatal
approximation than to the velar stop. However, the coronal
stop-palatal approximation, coronal stop-pharyngeal approx-
imation, palatal approximation-pharyngeal approximation,
and velar stop-pharyngeal approximation contrasts should be
interpreted with caution since the effect size is smaller than
for the more robust effects, and the significance of these con-
trasts depends on parameterization.

In sum, the present study shows that the jaw contributes
least to the velar stop for [k], more to pharyngeal approxima-
tion for [A], still more to palatal approximation for [i], and
most to the coronal stop for [t]. Additionally, the jaw con-
tributes more to the coronal stop for [t] than to the bilabial
stop for [p] (see Fig. 10).

VIII. INTER- AND INTRA-PARTICIPANT VARIABILITY

Section VII shows an effect of constriction task on the
articulator synergy biomarker values. This section investi-
gates inter- and intra-participant variability in this effect.
Inter-participant variability is evaluated by testing the signif-
icance of by-participant random slopes for constriction task.
The linear mixed effects model of Sec. VII [cf. Eq. (32)] is
compared to a reduced model that does not have by-
participant random slopes for constriction task. The likeli-
hood ratio test indicates that the by-participant random
slopes for constriction task are a significant source of
variance [v2(14)¼ 560; p¼ 1.7! 10'109]. This indicates
variability by participant in the effect for constriction task.
By-participant variability in the effect for constriction task is
further characterized by determining whether individual par-
ticipants display similar effects for constriction task (i.e.,
same pattern of average values) and similar variances across
constriction tasks. For each participant, the Mann-Whitney
U test identifies all pairs of constriction tasks that differ in
average biomarker value, and the Fligner-Killeen test identi-
fies all pairs of constriction tasks that differ in biomarker
variance (see Fig. 11). The study performed (number of par-
ticipants) ! [(number of constriction tasks)2 - (number of
constriction tasks)]/2¼ 80 Mann-Whitney U tests and the
same number of Fligner-Killeen tests for a total of 160 statis-
tical tests. Statistical tests are considered significant at the
Bonferroni-corrected significance level a¼ 0.05/160.

The results of the Mann-Whitney tests demonstrate that
the pattern of average values across constriction tasks is con-
sistent with the effect for constriction task discovered by the

FIG. 10. (Color online) Synergies differ in terms of inter-articulator coordi-
nation depending on the constriction task. Constriction tasks are ordered
from top to bottom in terms of jaw usage. Vertical lines indicate a statisti-
cally significant contrast. Compare with numeric results in Table II.
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linear mixed effects model (coronal stop > palatal approxi-
mation > pharyngeal approximation > velar stop; and
coronal stop > bilabial stop; cf. Sec. VII) with three excep-
tions: velar stop-pharyngeal approximation constrast of par-
ticipant M1; palatal approximation-velar stop and palatal
approximation-pharyngeal approximation constrasts of M4.
Although the participants individually display consistent pat-
terns of average values, the dispersion of the data is large
and the sample size within each participant is small. For this
reason, the Mann-Whitney U test does not reject all the null
hypotheses.

The results of the Fligner-Killeen tests demonstrate that
participants can display high biomarker variance for some
constriction tasks but low variance at others. However, fewer
Fligner-Killeen tests reject the null hypothesis than do the

Mann-Whitney U tests. This indicates that fewer variances
differ by constriction task than do the average values.

IX. DISCUSSION

A. Task specificity of articulator synergies

The present study shows that the jaw contributes least
to the velar stop for [k], more to pharyngeal approximation
for [A], still more to palatal approximation for [i], and
most to the coronal stop for [t]. Additionally, the jaw con-
tributes more to the coronal stop for [t] than to the bilabial
stop for [p]. This supports the hypothesis that different
articulator synergies have different patterns of inter-
articulator coordination.

FIG. 11. (Color online) Sample distribution of the articulator synergy biomarker (y axis) by participant (panel) and constriction task (color, x axis). Kernel den-
sity estimate (shaded) and 95% confidence interval for the mean (whiskers) provided for each distribution. Brackets below each panel indicate pairs of con-
striction tasks that significantly differ in average value (Mann-Whitney test) or variance (Fligner-Killeen test). p-values corrected for multiple comparisons
with the Bonferroni method. Adjusted p-values used to determine significance.
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The effect of constriction type on the articulator synergy
biomarker demonstrates that inter-articulator coordination
differs depending on the constriction task. Jaw usage varies
by place of articulation (i.e., constriction location), active
articulator (i.e., end-effector), and manner of articulation
(i.e., target constriction degree; Vatikiotis-Bateson and
Ostry, 1995). Both of these sources of variance presumably
combine to produce the effect of constriction type reported
in this paper. This introduces a confound in interpreting the
effect for constriction task, and thus is a limitation of the pre-
sent study. Future research should focus on how place and
manner of articulation interact to determine articulator syn-
ergy biomarker values.

If synergies organize the articulators on a temporary
basis for achieving motor goals such as vocal tract constric-
tions, as proposed in theories of motor control (Saltzman and
Kelso, 1987; Turvey, 1977), theories of phonological organi-
zation (Browman and Goldstein, 1989; Ohala et al., 1986),
and robotic systems (Herbort et al., 2010), then the pattern
of inter-articulator coordination varies over time as the vocal
tract deploys different synergies. The articulator synergy
biomarker provides the means to characterize this time-
varying pattern of inter-articulator coordination in terms of
the percent contribution of each articulator to changing the
constriction task variable at the synergy’s place of articula-
tion. This complements the finding that articulator synergies
are task-dependent in terms of inter-articulator coupling
(Lancia and Rosenbaum, 2018), inter-articulator correlation
(Jackson and Singampalli, 2009), and response to mechani-
cal perturbation of articulator positions (Kelso et al., 1984).

B. Technical performance

The proliferation of vocal tract imaging databases
(Narayanan et al., 2014; Sorensen et al., 2017) and the
increasingly complex computational methods for studying
the morphological (Lammert et al., 2013b) and functional
(Dawson et al., 2016) complexities captured therein under-
score the importance of evaluating the technical performance
of quantitative imaging biomarkers of speech. The articula-
tor synergy biomarker does not have systematic bias.
However, precision is weak or poor at the coronal stop, velar
stop, and pharyngeal approximation. Since the intraclass cor-
relation coefficient is the ratio of inter-participant variability
to total variability, which is the sum of intra- and inter-
participant variability [cf. Eq. (31)], low precision may be
due to large intra-participant variance, small inter-
participant variance, or some combination of the two. For
the velar stop, low precision is due to small inter-participant
variance (cf. Fig. 9). For the coronal stop and pharyngeal
approximation, low precision is due to large intra-participant
variance. Intra-participant variance is unavoidable in volun-
tary movement due to short-term physiological variability
that arises from the way the brain regulates noise in the
motor system (Harris and Wolpert, 1998; van Beers, 2009;
Wu et al., 2014). Although we do not discount other techni-
cal sources of variance such as MRI operator variability and
image analysis variability, here we emphasize short-term
physiological variability as the fundamental obstacle to

achieving high precision in biomarkers of voluntary
movement.

C. Parametric estimation for task dynamics

The forward kinematics relates articulator movements
to the changes in constriction task variables that these move-
ments produce. In the task dynamics model of speech pro-
duction (Saltzman and Munhall, 1989), the forward
kinematics is specified by the forward kinematic map and its
Jacobian matrix. The study estimated these parameters from
real-time MR images of speech production and evaluated the
estimator by cross-validation. Error was well below the spa-
tial resolution of the scanner.

The inverse kinematics relates changes in constriction
task variables to the articulator movements that produce
them. In the task dynamics model of speech production
(Saltzman and Munhall, 1989), the percent contribution of
each articulator in a synergy is determined by assigning
weights to the articulators. In contrast to studies that manu-
ally assigned weights to the articulators based on theoretical
considerations (for example, see Simko and Cummins, 2010,
for an assignment of weights based on articulator mass), the
present study is the first to obtain a quantitative readout of
these weights from speech production data. Analysis of syn-
thetic data in Sec. VI B suggested that the articulator synergy
biomarker is a monotonic function of the jaw weight param-
eter [Fig. 7(a)]. The function will depend on the number of
articulator degrees of freedom, the coordinate system for the
articulator degrees of freedom, the constriction task, and the
weights of other articulators. Further work is necessary to
characterize these sources of variance, but the present study
suggests that the articulator synergy biomarker can be
mapped to articulator weights, and thus jaw weight parame-
ters can be estimated from real-time MR images of speech
production.

D. Decomposing the tongue into multiple articulators

For coronal stop [t], palatal approximation [i], velar stop
[k], and pharyngeal approximation [A] constriction tasks, the
articulator synergy indicates the relative contribution of the
jaw and tongue. For example, a biomarker value of 60%
indicates a jaw contribution of 60%. The remaining 40% is
understood to come from the tongue. The present study con-
siders the contribution of the tongue in aggregate and does
not decompose its contribution into subparts such as tongue
body and tongue tip. An extension of the articulator synergy
biomarker would be to consider not simply a binary distinc-
tion between jaw and tongue, but a ternary distinction among
jaw, tongue body, and tongue tip or even a quaternary dis-
tinction among jaw, tongue root, tongue dorsum, and tongue
tip. This section provides a preliminary indication of how
this is possible within the framework presented in the present
study.

The method by which Sec. IV obtained jaw factors
offers a recipe for obtaining factors that are associated with
the motion of a subset of data-points. First, we obtain the
jaw factors [Fig. 12(b)] as in Sec. IV. The null space of the
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transposed jaw factors captures the part of tongue and lip
motion that is independent of jaw motion.

Second, we project the data matrix on the null space of
the transposed jaw factors as in Sec. IV. This is the contour
motion that is independent of the jaw. Rather than subject
the whole tongue contour to principal component analysis as
in Sec. IV, we perform principal component analysis only on
the tongue body contour vertices. The tongue body factors
[Figs. 12(c) and 12(d)] are the vectors of covariances
between the z-scored tongue body principal component
scores and the tongue body and tongue tip contour vertices.
The null space of the transposed set of jaw and tongue body
factors captures the part of tongue tip motion that is indepen-
dent of jaw and tongue body motion.

Third, we project the data matrix on the null space of
the transposed jaw and tongue body factors. This is the con-
tour motion that is independent of the jaw and tongue body.
We perform principal component analysis on the tongue tip
contour vertices. The tongue tip factors [Fig. 12(e)] are the
vectors of covariances between the z-scored tongue tip prin-
cipal component scores and the tongue tip contour vertices.
The null space of the transposed set of jaw, tongue body, and
tongue tip factors captures residual variance that is indepen-
dent of jaw, tongue body, and tongue tip motion.

Whereas Sec. IV extracts all tongue factors from the
null space of the transposed jaw factors, the procedure
described above extracts tongue body factors from the null
space of transposed jaw factors and then extracts tongue tip
factors from the null space of the transposed jaw and tongue
body factors. This procedure offers a systematic way to
decompose the tongue into subparts that form a kinematic
chain (Craig, 2005). Future work that pursues this approach
will provide greater detail in the analysis of jaw-tongue coor-
dination in synergies.

E. Forward kinematics and the nervous system

The nervous system has an internal model of the for-
ward kinematics (Guenther, 2016; Shadmehr et al., 2010).
This model encodes the expected result of motor commands
in terms of expected sensory consequences (proprioceptive
and auditory consequences in the case of speech). Both the
forward kinematics of the vocal tract and the nervous sys-
tem’s internal model of the forward kinematics are important
components of a computational model of motor control (for
a theoretical model of speech motor control that cleanly dis-
tinguishes these components; see Ramanarayanan et al.,
2016; cf. “forward kinematics” and “model of forward kine-
matics” blocks; see also Houde and Nagarajan, 2011;
Todorov and Jordan, 2002). Although the present study esti-
mates the forward kinematics, it does not characterize the

nervous system’s internal model of the forward kinematics.
While both relate the articulator degrees of freedom to task
variables, the coordinate system that represents the articula-
tor degrees of freedom in the nervous system may differ
from the coordinate system of the present study. That is, the
nervous system may represent the articulator degrees of free-
dom differently than with jaw, tongue, and lip factors. If the
coordinate system for the nervous control of vocal tract
movement were known, insight into motor variability, motor
equivalence, and redundancy could be gleaned from analysis
of the forward kinematic map using the uncontrolled mani-
fold approach (Scholz and Sch€oner, 1999). However, the
results of such studies are inconclusive without knowledge
of the coordinate system used in the nervous system (Sternad
et al., 2010). Knowledge of the coordinate system could
potentially be obtained through detailed modeling of the
innervation of head and neck muscles. Indeed, physiological
knowledge guides the choice of coordinate system for analy-
sis of the uncontrolled manifold in human upper limb move-
ment (cf. argument of Scholz and Sch€oner, 2014, Sec. 7.1,
point 3). Biomechanical models offer tools for investigating
the coordinate system available to the nervous system for
producing vocal tract movements (Lloyd et al., 2012).
Szabados and Perrier (2016) used a biomechanical model to
investigate motor equivalence using the uncontrolled mani-
fold approach. Future work should investigate whether MRI
can be used to model the nervous system’s internal model of
the forward kinematics of the vocal tract.

X. CONCLUSIONS

The present study shows that the jaw contributes least to
the velar stop for [k], more to pharyngeal approximation for
[A], still more to palatal approximation for [i], and most to
the coronal stop for [t]. Additionally, the jaw contributes
more to the coronal stop for [t] than to the bilabial stop for
[p]. This supports the idea that synergies organize the articu-
lators on a temporary basis for achieving motor goals such
as vocal tract constrictions, and the pattern of inter-
articulator coordination varies over time as the vocal tract
deploys different synergies.

The following are four potential threads of research that
build on the results of the present study. First, the present
study estimated parameters of vocal tract kinematics, not
parameters of vocal tract dynamics. That is, the parameters
have to do with motion, not with the forces that produce the
motion. In the task dynamics model of speech production,
dynamical parameters include gestural parameters (e.g.,
stiffness, damping, mass) and parameters of inter-gestural
coordination (e.g., coupling, blending). Future studies may
attempt to estimate these parameters from MRI. Second, the

FIG. 12. (Color online) (a) Operational
definition of jaw, tongue body, and
tongue tip contours. (b)–(e) Mean vocal
tract contour (black) with jaw, tongue
body (!2), and tongue tip factors over-
laid (red contour: þ2 standard devia-
tion; blue: '2 standard deviation).
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present study showed that the articulator synergy biomarker
varied by constriction task. Future studies may evaluate
whether the articulator synergy biomarker depends on lin-
guistic context (e.g., phonetic, lexical, syntactic), speech
conditions (e.g., speech in noise vs clean speech, variable
speech rate), sociolinguistic factors, sex, anatomy, and age,
especially during childhood development. Third, while the
present study focused on jaw-tongue and jaw-lip synergies,
the proposed method could be used to study other synergies
such as those between the dorsum and tip of the tongue or
between the tongue and velum. Future research studies
should investigate these synergies. Fourth, a forward kine-
matic map from articulators to acoustic formant frequencies
is used by the Directions into Velocities of Articulators
(DIVA) model of speech production (Guenther, 1995). By
using real-time MRI with simultaneously recorded speech
audio, the proposed framework could be extended to esti-
mate this forward kinematic map from data (McGowan and
Berger, 2009).

XI. REPRODUCIBILITY AND REPLICATION

The scripts required to reproduce the present study are
available online.1 The MRI data-set is available online for
free use by the research community (see T€oger et al., 2017).2

A replication of the present study was performed using the
USC Speech and Vocal Tract Morphology MRI Database
(Sorensen et al., 2017), and is available as supplementary
material.3
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