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Abstract

Electropalatography (EPG) is a technique that deter-
mines the contact patterns between the tongue and the hard
palate during speech. In one of its most common forms, it
utilizes an artificial palate with 62 silver electrodes embed-
ded in its tongue-facing surface. At small regular time inter-
vals it is recorded whether a specific electrode is contacted or
not by the tongue, leading to tongue-palate contact patterns.

EPG is nowadays a relatively well-estabilshed tool in
phonetic research, in the clinical treatment of people with
articulation difficulties or cleft palate, and also in the teach-
ing of second languages. Still, the derivation of EPG data is
a rather expensive and difficult process. What is suggested
herein is that a means of estimating EPG patterns directly
from the acoustic speech signal - with no need of any special
equipment - would be of great value to speech pathologists
and phoneticians alike.

This paper presents work towards finding a mapping be-
tween acoustic parameters, namely the Mel Frequency Cep-
stral Coefficients, derived directly from the speech signal,
and the corresponding EPG patterns. It may be regarded as
a special case of a more general problem called acoustic-to-
articulatory inversion, or speech inversion, which refers to
finding mappings between the speech signal and some kind
of articulatory parameters. One of the main motives for this
research field is that the additional articulatory information
could be used to improve the performance of current speech
recognition systems. EPG patterns could also be used in such
a context.

For a solution of the problem described, we investigate
the utilization of Support Vector Machines, a relatively new
and very promising supervised learning technique, of which
not many applications have yet appeared in the speech pro-
cessing field.

The source of the data we use is the MOCHA database,
which is well documented and publicly available via the
Web, thus allowing for comparisons of other researcher’s re-
sults to ours.

1. Introduction

Electropalatography (EPG) is a widely used technique

x x x x x x
x x x x x x x x
x x x x x x x x
x x x o o x x x
x x o o o o x x
x x o o o x x x
x x o o o x x x
x x x o o x x x

Figure 1: EPG instance. x indicates a contact point between
the tongue and the hard palate, while o indicates a non con-
tact point.

for recording and analysing one aspect of tongue activity,
namely its contact with the hard palate during continuous
speech. An essential component of EPG is a custom-made
artificial palate, which is moulded to fit as unobtrusively as
possible against a speaker’s hard palate. Embedded in it are
62 electrodes exposed to the lingual surface. When con-
tact occurs between the tongue surface and any of the elec-
trodes, a signal is conducted to an external processing unit
and recorded. This process leads, at discrete time instants, to
tongue-palate contact patterns like the one shown in Figure 1

EPG is nowadays an important tool in speech and lan-
guage therapy, especially in the treatment of articulation dis-
orders associated with cleft palate [5]. It is used in phonetic
research in a variety of contexts (e.g. [7]). It has also been
suggested that visual feedback from EPG might be helpful
for second language acquisition.

Nevertheless, only few speech therapists or phoneticians
have actual access to the relatively specialized equipment
needed for the derivation of EPG data. One of the things
suggested here is that some means of estimating EPG pat-
terns straight from the acoustic speech signal would be of
much interest.

We are exploring the, hopefully existing, mapping be-
tween acoustic parameters computed from the speech sig-
nal by means of signal processing techniques and the corre-
sponding EPG patterns. We are utilizing stochastic modeling
and machine learning techniques. To this end we make use
of a certain amount of speech/EPG examples.

For the purposes of this paper we use the Mel Frequency



Cepstral analysis for the parametrization of the speech sig-
nal. By making the assumption that every EPG event (a
contact or a non-contact at a certain electrode and point in
time) depends only on the speech signal and isindepen-
dentof other EPG events (i.e. concurrent activations of nei-
boughring electrodes, or previous activations of the same
electrode), the problem of estimating EPG patterns ends up
being a fairly straightforward two-class pattern recognition
problem. For its solution, we adopt herein a Support Vector
Machine (SVM) framework.

Our work may be considered in the context ofacoustic-
to-articulatory inversion, a field that has risen the attention of
several reserachers [12]. This refers to the general problem of
mapping the acoustic speech signal onto a space describing
the configuraton of the human vocal tract that actually pro-
duced this signal. The information derived this way may be
used towards an improvement of the performance of current
automatic speech recogntion systems. Several techniques
that combine acoustic and articulatory features in a speech
recognition context have been indeed proposed [9, 11].

The next section is a brief introduction to the MOCHA
database, the source of our data, with emphasis on its EPG
part. Section 3 is rough presentation of the basic SVM frame-
work for pattern recognition, and one of its variants for deal-
ing with unbalanced datasets (which is the case for EPG
data). In Section 4 we explain the way we parametrize the
speech signal and more generally process our data. In Sec-
tion 5 we explain our strategy for selecting parameters for
our SVM models. We present our results in Section 6, and
finally draw conclusions in the last section.

2. The MOCHA Database

The MOCHA (Multi-Channel Articulatory) database is
evolving in a purpose built studio at the Edinburgh Speech
Production Facility at Queen Margaret University College
[15].

During speech, four data streams are recorded concur-
rently straight to a computer: the acoustic waveform, sam-
pled at 16kHz with 16 bit precision, together with laryngo-
graph, electropalatograph and electromagnetic articulograph
data. EPG provides tongue-palate contact data at 62 nor-
malised positions on the hard palate, defined by landmarks
on maxilla. The EPG data are recorded at 200Hz.

The speakers are recorded reading a set of 460 British
TIMIT sentences. These short sentences are designed to
provide phonetically diverse material and capture with good
coverage the connected speech processes in English. All
waveforms are labelled at the phonemic level.

The final release of the MOCHA database will feature
up to 40 speakers with a variety of regional accents. At the
time of writing this paper two speakers are available. For the
experiments herein, the acoustic waveform and EPG data, as
well as the phonemic labels for the fsew0 speaker, a female
speaker with a Southern English accent, are used.

3. Support Vector Machines

A Support Vector Machine (SVM) is a supervised learn-
ing technique for pattern recognition. An SVM is a
maximum-margin hyperplane that lies in some space. Given
training examples labeled either positive or negative, a
maximum-margin hyperplane splits the positive and negative
training examples, such that the distance from the closest ex-
amples (the margin) to the hyperplane is maximized.

A thorough presentation of the SVM framework for pat-
tern recognition is beyond the scope of this paper. The in-
terested reader is referred to [2] as a starting point. What
follows is the formulation of the algorithm used in our ex-
periments, namely the C-Support Vector Classification (C-
SVC) [13].

Given training vectorsxi ∈ Rn, i = 1, . . . , l in two
classes, and a target vectory ∈ Rl such thatyi ∈ {1,−1},
C-SVC, solves the primal problem:

minimize
1
2
wT w + C

∑t
i=1 ξi

subject to

yi(wT Φ(xi) + b) ≥ 1− ξi

ξi ≥ 0, i = 1, . . . , l. (1)

Its dual is

minimize
1
2
aT Qa− eT a

subject to

0 ≤ ai ≤ C, i = 1, . . . , l

yT a = 0, (2)

wheree is the vector of all ones,C > 0 is the upper bound,Q
is anl by l positive semidefinite matrixQij ≡ yiyjK(xi, xj)
andK(xi, xj) ≡ Φ(xi)T Φ(xj) is the kernel. Here, training
vectorsxi are mapped into a higher (maybe infinite) dimen-
sional space by the functionΦ, giving thus rise to a machine
that is, in general, non-linear on the data.

The decision function of such a machine is

sign(
l∑

i=1

yiaiK(xi, x) + b). (3)

The choice of the kernel functionK(xi, xj) is quite im-
portant for the implementation of an SVM. Though new ker-
nels are often being proposed by researchers the most com-
mon ones are the linear kernel

K(xi, xj) = xT
i xj ; (4)

the polynomial kernel

K(xi, xj) = (γxT
i xj + r)d, γ > 0; (5)



the radial basis function (RBF) kernel

K(xi, xj) = exp(−γ‖xi − xj‖2), γ > 0; (6)

and the sigmoid kernel

K(xi, xj) = tanh(γxT
i xj + r), (7)

whereγ, r andd are kernel parameters.

For a relatively small amount of training data, Problem 2
can be solved with any general purpose optimization package
that solves linearly constrained convex quadratic problems.
However, for larger problems, there is a need for a decompo-
sition algorithm so that only portions of the training data will
be handled at a given time. For the experiments described
herein, we use the LIBSVM library for Support Vector Ma-
chines [3] which implements such an algorithm.

3.1 Weighted SVM

In the case where there is an unequal proportion of data
between the two classes we may need aweightedvariant of
the C-SVC algorithm [8]. That is

minimize
1
2
‖w‖+ C+

∑
i:yi=+1 ξi + C−

∑
i:yi=−1 ξi

subject to

yi(wT Φ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l. (8)

A usual heuristic is that

C+/C− = l−/l+ = α, (9)

wherel+ =
∑

i:yi=+1 1 andl− =
∑

i:yi=−1 1.

We would like to find a value for the penalty parameter, call
it C∗ so that the expressions 1 and 8 are equivalent. We have

C∗
l∑

i=1

ξi = C+
∑

i:yi=+1

ξi + C−
∑

i:yi=−1

ξi (10)

If we assume thatξi=const. (which not actually true but rea-
sonable for our purpose), we get

(l+ + l−)C∗ = l+C+ + l−C−

(1 + α)C∗ = C+ + αC− (11)

Combining Equations 9 and 11 we get

C− =
1 + α

2α
C∗,

and

C+ =
1 + α

2
C∗.

4. Data Processing

Several processing steps are carried out in order to render
the acoustic and EPG data into a format suitable for use with
SVMs.

First, based on the label files, silent parts from the begin-
ning and end of the 460 fsew0 uttereances are omitted. This
is necessary since, during silent stretches, the tongue can po-
tentially take any configuration, something that could pose
serious difficulties to SVM training.

Next, Mel Frequency Cepstral Analysis [4] is carried out
on the acoustic signal, using a Hamming window of 10ms
with a shift of 5ms. (These values are chosen so as to
have a perfect one-to-one match between the acoustic frames
and the EPG data, sampled at 200Hz.) Including the 0’th
order coefficient, 19 Mel Frequency Cepstral Coefficients
(MFCCs) plus the log energy are derived. The VOICEBOX
Toolkit [1] is used to this end.

The classifier we are looking for would have to account
for the dynamic properties of the speech signal. Since this
situation cannot be (at least to the knowledge of the writers)
explicitly dealt with in the SVM context, we adopt a com-
monplacespatial metaphorfor time. This literally means
that instead of using parameters from the frame in question
alone, we need to construct larger input vectors that contain
additional parameters from previous frames. Nevertheless,
considerations on the SVM training time don’t allow us to
use too many such previous frames. So, for every time-frame
of speech a vector of acoustic parameters is constructed con-
taining the coefficients and log energy of the frame in ques-
tion plus the four previous ones.

What we end up with is, for every time-frame of real
speech, ax,y pair, wherex is a 100-dimensional (5 × 20)
vector of acoustic parameters, andy is a 62-dimensional
EPG vector comprising of{+1,−1} values, one for each
elctrode where a contact or non-contact between the tongue
and the hard palate may be recorded.

From the 460 utterances of the fsew0 speaker contained
in the database, 368 are included in the training set and 46
form the test set. Another 46 utterances form a separate vali-
dation set, which will be of no actual use for the experiments
described herein.

5. SVM Model Selection

As already mentioned, we treat every point of contact be-
tween the tongue and the palate independently of the others.
This approach leads to 62 different problems with the exact
same properties as the problem described in Section 3, and
actually means that we are going to train 62 different sup-
port vector machines, one for every point. Nevertheless, we
should expect that the problems have some common proper-
ties, and so we will adopt a common model selection strategy
for all of them. Figure 2 which shows a numbering of the
contact points should be a useful refernce for the following.
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Figure 2: Numbering of (contact) points

A model selection strategy refers to the choice of a ker-
nel, the corresponding kernel parameters and the “penalty pa-
rameter”C of Equation 2. Such is needed, since the Support
Vector Machines framework as described in Section 3 gives
plenty of choices.

A first question is the choice of kernel. It is suggested in
the literature [6] that in general the RBF kernel is a reason-
able first choice. The RBF kernel nonlinearly maps samples
into a higher dimensional space, so it, unlike the linear ker-
nel, can handle the case when the relation between class la-
bels and attributes is nonlinear. Furthermore the linear kernel
is a special case of RBF and also the sigmoid kernel behaves
like RBF for certain parameters.

The second reason for choosing the RBF kernel is the
number of hyperparameters which influences the complexity
of model selection. The polynomial kernel has more hyper-
parameters than the RBF kernel.

Finally the RBF kernel has less numerical difficulties.
One key point is that0 < K(xi, xj) ≤ 1 in contrast to
polynomial kernels of which kernel values may go to infinity
(γxT

i xj + r > 1) or zero(γxT
i xj + r < 1) while the degree

is large. Moreover, we must note that the sigmoid kernel is
not valid (i.e. not the inner product of two vectors) under
some parameters.

The second question is which penalty parameterC and
kernel parameterγ we should use for our task. The adopted
procedure is called grid-search using cross validation and is
as follows:

Our training set as described consists of 196266x,y
pairs. We take a subset of them by taking one out of 50
pairs, ending up with 3924 training examples. We then di-
vide this “cross-validation set” into four equal sized subsets.
For pairs of parametersC andγ, we train and test four dif-
fernet classifiers using each of these subsets as a test set and
the remaining three as a training set, calculating finally the
mean classification accuracy of the four of them (called the
“cross-validation accuracy”).

The goal is to identify the pair of parameters(C, γ) that
gives the best cross-validation accuracy. We first try a coarse
grid search, trying exponentially growing sequences ofC
and γ (C = 2−5, 2−3, . . . , 215, γ = 2−15, 2−13, . . . , 23).
After identifying a “better region” on the grid, we conduct
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a finer grid search on that region.

As already mentioned, we are about to train 62 differ-
ent support vector machines, one for every possible contact
point between the tongue and the hard palate. Since it would
be too much time-consuming to perform cross-validation for
every point, we adopt a slightly different strategy. Assum-
ing that, since the properties of the problems are similar, the
final (C, γ) pairs will also be similar, we perform full cross-
validationon some points, in order to subsequently select a
(C, γ) pair that would provide a fairly good cross-validation
accuracy for all of them. Figures 3, 4, 5, 6, 7, 8, 9 and 10
show cross-validation results for points 3, 15, 37 and 48.

For point 3 the best cross-validation accuracy is obtained
at (C = 21, γ = 21), (C = 20.75, γ = 21.25) and (C =
21.25, γ = 20.75); for point 15 at(C = 2−0.5, γ = 20.25);
for point 37 at(C = 20.75, γ = 2−0.5) and for point 48 at
(C = 20, γ = 21), (C = 20.75, γ = 20) and(C = 21, γ =
2−0.25). The results are not identical, so we have to chose
a (C, γ) pair that gives good cross-validationon average, to
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use for our task in hand. This would be(C = 20.5, γ = 20).
After the model selection we are ready to proceed to our

actual task in question, namely the training and testing of
the 62 classifiers, each for every possible contact point. The
training set of 196266 training examples we have is too big
for the SVMs to be trained in a reasonable amount of time, so
we do some data reduction by taking one out of five examples
ending up with 39253 input-output pairs. Our test set consists
of 25514 examples.

6. Results

Our results are presented in the first part of Table 1(under
plain SVM) , where, for each point we show, the percentage
of contacts and non-contacts (positive or negative examples)
in our final test set (the corresponding numbers for the train-
ing set are similar) the classification rate of the final classi-
fiers; the percentage of contacts which are classified correctly
by the classifier; and the percentage of non-contacts which
are classified correctly.

For a few points (e.g. 26, 34) we observe a 100% clas-
sification rate, which is quite plasmatic, since in the test set
only negative examples are observed (i.e. no contacts exist
in the test set and there is no actual use of a classifier). Other
points (e.g 18, 27, 41, 50) show a very high classification
rate which, nevertheless, accounts only for the fact that the
chance level of the data (defined as the maximum percentage
of the two categories occuring in the test set) is very high.
The two last columns of Table 1 indicate that the classifier
does nothing but assigning the most probable output to all
the test examples. On the contrary, at points like 11, 24 and
54, we observe a non-zero (even though still small) recog-
nition rate on the sparse category , which is an encouraging
fact, since it indicates a capability on part of the classifier to
perform some actual classification.

For the majority of possible contact points the sets remain
realtively non-balanced, and recognition rates for the two cat-
egories display remarkable difference between them. Never-
theless, with only one exception (point 51), the final classifi-
cation rates are higher than the corresponding chance levels.
On the other hand, for the points for which the training and
test sets are fairly balanced (e.g 13, 22, 38, 45) the classifiers
perform quite well, with classification rates> 80, 99%, in
general far bigger than the corresponding chance levels.

Figure 11 shows another aspect of the results, namely the
distributions of the errors made by the set of the SVMs per
contact pattern (or time frame). For most of the possible time
frames, only few (≤ 3) errors are made, nevertheless there
exist a few frames with a large number of errors (up to 32).
The average of this distribution is∼ 4, 4 errors per frame.

It is apparent that one of the drawbacks of the approach
just described derives from the fact that, in our data, it is
common that the one of the two classes (usually the “non-
contacts”) has much more examples than the other. This
causes problems, in the sense that our classifiers are biased,
performing far better on the “compact” category than on the
sparse one. In order to alleviate for this situation we attempt
to make use of the weighted SVM, as described in section
3.1, with C∗ = 20.5. The results are shown in the second
part of Table 1.

Inspection of the last two columns of the table reveals that
the weighted SVM achieves the expected effect: the recog-
nition rates on the two categories are much closer to each
other than in the plain SVM case, sometimes almost equal.
Nevertheless, the recognition rate of the “compact” category
decreases, leading inevitably to a lower overall classification
rate.

7. Conclusion

We have presented experiments on the acoustic-to-
electropalatogaphic inverse mapping with Support Vector
Machines, using the fsew0 speaker data from the MOCHA
database. We have achieved an overall classification rate of
92, 90%. This is no reason to overjoy, since the data expose
a relatively high chance level. Further experiments with a
weighted variant of the typical SVM did not give rise to a
clear improvement.

One of our original questions was wether the Mel Fre-
quecy Cepstral Analysis is a parametrization tool well-suited
for our given problem, as it is for other speech recognition
related tasks. This is still an open question. Other kinds of
parametrization could also be considered.

We have used the Radial Basis Function kernel for our
SVMs. It is clearly suggested in the literature that this is the
best kernelto start with. Other kernels could possibly give
rise to better results. In order to select training parameters
we performed cross-validation experiments on a few EPG
points, took a pair of parameters that seemed to do well on
all of these points, and applied them toall of our points for



Data Statistics Plain SVM Weighted SVM
Positive Negative Class/tion Rate of Rate of Class/tion Rate of Rate of

Point Examples Examples Rate Positives Negatives Rate Positives Negatives

1 25,79 74,21 88,28 68,04 95,31 85,70 86,67 85,36
2 17,92 82,08 88,22 52,39 96,05 83,03 85,74 82,44
3 7,36 92,64 93,74 21,25 99,50 87,08 75,56 87,99
4 15,63 84,37 88,24 44,67 96,31 81,87 84,88 81,31
5 28,61 71,39 88,93 73,68 95,04 86,54 88,95 85,57
6 35,52 64,48 85,88 72,25 93,39 85,06 83,87 85,71
7 38,31 61,69 85,12 72,78 92,78 84,86 82,91 86,06
8 17,61 82,39 87,89 46,19 96,80 80,94 84,96 80,08
9 10,08 89,92 91,98 32,09 98,69 85,95 83,03 86,39
10 4,90 95,10 95,11 1,28 99,95 89,12 66,35 90,29
11 4,56 95,44 95,46 0,52 100,00 89,67 62,29 90,98
12 12,53 87,47 89,95 34,89 97,83 82,92 82,76 82,94
13 33,42 66,58 87,38 76,24 92,98 85,89 87,95 84,86
14 49,21 50,79 84,16 81,47 86,76 84,20 83,45 84,92
15 53,31 46,69 86,28 82,11 89,94 86,16 88,16 83,88
16 9,27 90,73 92,01 19,97 99,37 84,10 68,78 85,66
17 1,72 98,28 98,30 1,14 100,00 96,28 42,01 97,22
18 0,60 99,40 99,40 0,00 100,00 98,86 13,73 99,37
19 1,06 98,94 98,94 0,00 100,00 97,70 27,68 98,46
20 2,68 97,32 97,33 0,15 100,00 93,83 46,71 95,12
21 9,82 90,18 91,60 23,07 99,07 82,65 69,79 84,05
22 59,01 40,99 86,21 92,71 76,85 86,13 88,37 83,05
23 47,39 52,61 84,33 86,08 82,76 84,31 88,68 80,37
24 2,12 97,88 97,99 5,17 100,00 96,12 45,76 97,22
25 0,16 99,84 99,84 0,00 100,00 99,86 37,5 99,96
26 0,00 100,00 100,00 0,00 100,00 100,00 0 100,00
27 0,05 99,95 99,95 0,00 100,00 99,94 0 99,99
28 0,25 99,75 99,75 0,00 100,00 99,49 6,35 99,72
29 6,19 93,81 94,49 17,22 99,59 88,89 64,43 90,40
30 45,98 54,02 82,99 82,96 83,01 82,99 87,76 78,93
31 60,96 39,04 85,93 92,47 75,72 85,55 88,07 81,61
32 10,79 89,21 92,94 41,77 99,13 89,52 76,46 91,09
33 0,08 99,92 99,92 0,00 100,00 99,92 19,05 99,99
34 0,00 100,00 100,00 0,00 100,00 100,00 0 100,00
35 0,00 100,00 100,00 0,00 100,00 100,00 0 100,00
36 0,05 99,95 99,95 0,00 100,00 99,91 28,57 99, 95
37 9,99 90,01 93,86 48,10 98,94 90,00 81,96 90,89
38 73,77 26,23 90,49 96,27 74,25 88,95 90,27 85,24
39 82,48 17,52 92,48 97,33 69,65 89,50 90,61 84,25
40 26,99 73,01 87,74 66,50 99,59 85,30 82,84 86,21
41 0,61 99,39 99,39 0,00 100,00 99,02 23,08 99,48
42 0,01 99,99 99,99 0,00 100,00 99,98 0 99,99
43 0,00 100,00 100,00 0,00 100,00 99,99 0 99,99
44 2,86 97,14 97,36 19,20 99,66 94,64 62,14 95,60
45 39,38 60,62 84,72 73,75 91,10 93,30 82,94 83,53
46 92,53 7,47 95,01 98,34 53,70 91,12 92,00 80,18
47 92,49 7,51 93,25 99,68 13,99 88,89 90,94 63,60
48 41,40 58,60 80,99 70,91 88,12 80,17 78,74 81,18
49 4,64 95,36 95,92 21,30 99,55 90,61 68,80 91, 67
50 0,18 99,82 99,82 0,00 100,00 99,53 0 99,71
51 1,22 98,78 98,77 1,60 99,98 96,69 47,12 97,30
52 8,66 91,34 93,89 44,77 98,55 87,78 81,35 88,38
53 73,85 26,15 85,73 94,47 61,04 82,96 84,47 78,72
54 97,64 2,36 97,66 100,00 0,83 95,15 96,46 40,93
55 92,73 7,27 93,27 99,85 9,33 87,52 90,50 49,51
56 87,08 12,92 88,37 99,27 14,90 80,48 83,04 63,26
57 10,62 89,38 92,21 31,67 99,40 85,24 76,97 86,22
58 1,34 98,66 98,66 0,00 100,00 95,41 45,48 96,09
59 4,98 95,02 96,38 32,36 99,74 91,93 80,63 92,52
60 25,26 74,74 83,95 51,66 94,86 79,42 79,42 79,42
61 89,64 10,36 90,71 99,59 13,82 82,30 84,58 62,57
62 89,87 10,13 90,82 99,60 12,88 81,42 83,24 65,26

Overall 92,90 89,87

Table 1: SVM Training Results



training. A more thorough parameter search leading to a sep-
arate pair of parameters for every EPG point would certainly
be preferable. Nevertheless, such a search would be far too
much time consuming.

A spatial metaphor for time was used to model the dy-
namic nature of the speech signal, since there was no clear in-
dication in the literature of an alternative existing in the SVM
framework. We used a relatively small context window, of
five time-frames, compared to other implementations in the
acoustic-to-articulatory inversion field (eg. [10]). Selection
of a larger window would be rather prohibitive in terms of
training time needed, even though we use one of the fastest
SVM packages available. The bulk of our data (originally al-
most 200.000 training examples – reduced to almost 40.000)
stands near the limits of the capabilities of such packages.
It is clearly problematic to use only subsets of our TIMIT
data, since we would like our classifiers to capture all the
connected speech processes in English.

Finally, for the purposes of this work we assumed in-
dependence among adjacent EPG events in space and time.
Modelling such dependencies is a difficult machine learning
problem. The Support Vector Machine framework, still in
a relatively early stage, does not yet provide clear solutions
to such problems. A few ideas seem to have appear in the
literature (e.g. [14]), but nothing really concrete yet.

References

[1] Mike Brooks. The VOICEBOX toolkit. Available at
http://www.ee.ic.ac.uk/hp/staff
/dmb/voicebox/voicebox.html.

[2] Christopher J. C. Burges. A tutorial on support vec-
tor machines for pattern recognition.Data Mining and
Knowledge Discovery, 2(2):121–167, 1998.

[3] Chih-Chung Chang and Chih-Jen Lin.LIBSVM: a li-
brary for support vector machines, 2001. Software
available at http://www.csie.ntu.edu.tw/˜ cjlin/libsvm.

[4] Steven B. Davis and Paul Mermelstein. Comparison
of parametric representations for monosyllabic word
recognition in continuously spoken sentences. InRead-
ings in speech recognition, pages 65–74. Morgan Kauf-
mann Publishers Inc., 1990.

[5] William J. Hardcastle, Fiona E. Gibbon, and Wilf
Jones. Visual display of tongue-palate contact: Elec-
tropalatography in the assessment and remediation of
speech disorders.British Journal of Disorders in Com-
munication, 26:41–74, 1991.

[6] Chi-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A
practical guide to support vector classification. Avail-
able at http://www.csie.ntu.edu.tw
/˜ cjlin/papers/guide/guide.pdf.

[7] Katerina Nicolaidis. An electropalatographic study of
Greek spontaneous speech.Journal of the International
Phonetic Association, 31(1):67–85, 2001.

[8] Edgar Osuna, Robert Freund, and Federico Girosi.
Support vector machines: Training and applications.
Technical Report AIM-1602, Massachusets Institute of
Technology, 1997.

[9] Matt Richardson, Jeff Bilmes, and Chris Diorio.
Hidden-articulator markov models for speech recogni-
tion. In ISCA IRTW Conference on Automatic Speech
Recognition, Paris, France, 2000.

[10] Korin Richmond. Estimating Articulatory Parameters
from the Speech Signal. PhD thesis, The Center for
Speech Technology Research, Edinburgh, 2002.

[11] Todd A. Stephenson, Hervé Bourlard, Samy Bengio,
and Andrew C. Morris. Automatic speech recognition
using dynamic bayesian networks with both acoustic
and articulatory variables. InInternational Conference
on Spoken Language Processing ICSLP2000, Bejing,
China, 2000.

[12] Asterios Toutios and Konstantinos Margaritis. A
rough guide to the acoustic-to-articulatory inversion of
speech. In6th Hellenic European Conference of Com-
puter Mathematics and its Applications, HERCMA-
2003, Athens, Greece, September 2003.

[13] Vladimir Vapnik. Statistical Learning Theory. Wiley,
New York, 1998.

[14] Emmanuel Vazquez and Eric Walter. Multi-output sup-
port vector regression. In13th IFAC Symposium on Sys-
tem Identification, Rotterdam, The Netherlands, 2003.

[15] Alan Wrench. A multi-channel/multi-speaker articu-
latory database for continuous speech recognition re-
search. InPhonus, Research Report No.4, Institute of
Phonetics, University of Saarland, 2000.


