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Abstract. We report work on the mapping between the speech signal and artic-
ulatory trajectories from the MOCHA database. Contrasting previous works that
used Neural Networks for the same task, we employ Support Vector Regression
as our main tool, and Principal Component Analysis as an auxiliary one. Our
results are comparable, even though, due to training time considerations we use
only a small portion of the available data.

1 Introduction

The acoustic-to-articulatory mapping [1, 2], also termed acoustic-to-articulatory inver-
sion of speech, is a special speech processing related problem that has attracted the
attention of several researchers for many years now. It refers to the estimation of ar-
ticulatory (speech production related) information using solely the speech signal as an
input source. A succesful solution could find numerous applications, such as helping
individuals with speech and hearing disorders by providing visual feedback, very low
bit-rate speech coding and the possibility of improved automatic speech recognition.

In the past, the articulatory features used in such a context were mostly inferred
by the corresponding acoustic data using vocal-tract models, synthesis models, or lin-
guisting rules. But recent technologies have made it possible to record actual articulator
movements in parallel with speech acoustics in a minimally invasive way. This “real”
human data is arguably preferable to older techniques, where additional complications
may be imposed by intrinsic flaws of the models themselves.

One of the forementioned technologies is the Electromagnetic Misdagittal Articu-
lography (EMMA) or Electromagnetic Articulography (EMA). Roughly speaking, for
the aquisition of EMA data, sensor coils are attached to the human subject, on specific
places on the lips, the teeth, the jaw, and the soft palate (velum). Then the human sub-
ject wears a special helmet that produces an alternating magnetic field that records the
position of the coils at end points of small fixed-size time intervals. The outcomes are
trajectories that illustrate the movement of the coils. Usually, there are two trajectories
for each coil, one for the movement in the front-back direction of the head, and one for
the top-bottom direction.

In this paper we follow Richmond’s work [1], who proposed a quite succesful map-
ping of the speech signal to EMA data, using Neural Networks (Multilayer Perceprtons
and Mixture Density Networks). We study an alternative –Machine Learning– approach
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using Support Vector Regression, a more recent and very promising method. We also
employ, as part of our experimentation, the techinque of Principal Component Analy-
sis, as a means to account for the interrelationships among the EMA trajectories. We
use the same dataset as Richmond (though we finally arrive at a significantly smaller
training set), namely the fsew0 speaker data from the MOCHA dabase.

2 The MOCHA Database

The MOCHA (Multi-Channel Articulatory) [3] database is evolving in a purpose built
studio at the Edinburgh Speech Production Facility at Queen Margaret University Col-
lege.

During speech, four data streams are recorded concurrently straight to a computer:
the acoustic waveform, sampled at 16kHz with 16 bit precision, together with laryn-
gograph, electropalatograph and electromagnetic articulograph data. The articulatory
channels include EMA sensors directly attached to the upper and lower lips, lower in-
cisor (jaw), tongue tip (5-10mm from the tip), tongue blade (approximately 2-3cm pos-
terior to the tongue tip sensor), tongue dorsum (approximately 2-3cm posterior from
the tongue blade sensor), and soft palate. Two channels for every sensor are recorded
at 500Hz: the positioning on the x-axis (front-back direction) and on the y-axis (top-
bottom direction).

The speakers are recorded reading a set of 460 British TIMIT sentences. These short
sentences are designed to provide phonetically diverse material and capture with good
coverage the connected speech processes in English. All waveforms are labelled at the
phonemic level.

The final release of the MOCHA database will feature up to 40 speakers with a vari-
ety of regional accents. At the time of writing this paper two speakers are available. For
the experiments herein, the acoustic waveform and EMA data, as well as the phonemic
labels for the fsew0 speaker, a female speaker with a Southern English accent, are used.

3 Support Vector Regression

The ε-SVR algorithm [4] is a generalization of the better known Support Vector Clas-
sification algorithm [5] to the regression case. Given n training vectors xi and a vector
y ∈ Rn such that yi ∈ R, we want to find an estimate for the fuction y = f(x) which
is optimal from a Structural Risk Minimization viewpoint. According to ε-SVR, this
estimate is:

f(x) =
n∑

i=1

(a∗
i − ai)k(xi,x) + b, (1)

where the coefficients ai and a∗
i are the solution of the quadratic problem

maximize

W (a,a∗) = −ε

n∑

i=1

(a∗
i + ai) +

n∑

i=1

(a∗
i − ai)yi − 1

2

n∑

i,j=1

(a∗
i − ai)(a∗

j − aj)k(xixj)

subject to 0 ≤ ai, a
∗
i ≤ C, i = 1, . . . , n, and

n∑

i=1

(a∗
i − ai) = 0. (2)
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C > 0 and ε ≥ 0 are parameters chosen by the user. The “penalty parameter” C may
be as high as infinity, while usual values for ε are 0.1 or 0.001.

The “kernel” k(xixj) is a special function which serves to convert the data into
a higher-dimensional space in order to account for non-linearities in the estimate func-
tion. A commonly used kernel is the Radial Basis Function (RBF) kernel:

k(x,y) = exp(−γ ‖ x − y ‖2), (3)

where the γ parameter is selected by the user.

4 Principal Component Analysis

PCA [2] is a transform that chooses a new coordinate system for a data set such that
the greatest variance by any projection of the data set comes to lie on the first axis,
the second greatest variance on the second axis, and so on. The new axes are called
the principal components. PCA is commonly used used for reducing dimensionality in
a data set while retaining those characteristics of the dataset that contribute most to its
variance by eliminating the later principal components.

The direction w1 of the first principal component is defined by

w1 = arg max
‖w‖=1

E{(wT x)2} (4)

where w1 is of the same dimension as the data vectors x. Having determined the direc-
tion of the first k − 1 principal components, the direction of the kth component is:

wk = arg max
‖w‖=1

E{wT (x −
k−1∑

i=1

wiwi
T x)2}. (5)

In practice, the computation of the wi can be simply accomplished using the sample
covariance matrix E{xxT } = C. The wi are then the eigenvectors of C that correspond
to the largest eigenvalues of C.

5 Data Processing

The MOCHA database includes 460 utterances of the fsew0 speaker. In order to render
these data into input-output pairs suitable for function estimation, we process them as
follows.

First, based on the label files we omit silent parts from the beginning and end of the
utterances. During silent stretches the articulators may possibly take any configuration,
something that could pose serious difficulties to our task.

Next, we perform a standard Mel Frequency Spectral Analysis [6] on the acoustic
signal with the VOICEBOX Toolkit [7], using a window of 16ms (256 points) with
a shift of 5ms. We use 30 filterbanks and calculate the first 13 Mel Frequency Cepstral
Coefficients. Then, we normalize them in order have zero mean and unity standard
deviation.
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In order to account for the dynamic properties of the speech signal and cope with the
temporal extent of our problem, we just use a commonplace in the speech processing
field spatial metaphor for time. That is, we construct input vectors spanning over a large
number of acoustic frames. Based on some previous small-scale experiments of ours,
we construct input vectors consisting of the MFCCs of 17 frames: the frame in question,
plus the 8 previous ones, plus the 8 next ones.

The steps taken to process the EMA data are similar to those described by Rich-
mond. First, the EMA data are resampled to match the frameshift of the acoustic coeffi-
cients (5ms). At the same time, they are smoothed, using a moving average window of
40ms so that recording noise is eliminated (after all, it is known that EMA trajectories
vary relatively slowly with time).

The mean values of the EMA trajectories calculated for every utterance vary con-
siderably during the recording process. There are two kinds of variation: rapid changes,
due to the phonemic content of each utterance, and slowly moving trends, mainly due
to the fact that te subject’s articulation adapts in certain ways during the recording ses-
sion. It is beneficial to remove from the EMA data the second type of variation, while
keeping the first. Thus, we calculate the means, low-pass filter them, and subtract those
filtered means from the EMA data. (See Figure 1 for an explanation).
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Fig. 1. Mean values of the “velum height” (vy) channel across the utterances in the recording
session. The dashed line shows the real means and the solid line their filtered version which is
actually used for normalization.

Finally, we scale the EMA data by four times their standard deviation (across the
whole corpus), so that they roughly lie in the interval (−1, 1), something crucial for
SVR training.

Thus, we end up with training examples with a 221-dimensional (17 × 13) real-
valued vector as input and a 14-dimensional real-valued vector as output. We split our
data into two big halves: the even-numbered utterances constitute a “big training set”,
and the odd-numbered ones a “big test set”. Each one has more than 100.000 examples.
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But, since SVR training is a relatively slow process, using the whole “big training
set” for training would merely be out of the question. We would like a reduced training
set, that is somehow “representative” of the whole corpus. Knowing (from the label
files) the phoneme that each of our “big training set” examples corresponds to, we
randomly select 200 examples “belonging” to every phoneme. With 44 phonemes in
the database, we end up with 8800 training examples.

Finally, for our test set, we simply use 10 utterances spanning across our whole “big
test set”.

6 SVR Training and Results

The ε-SVR algorithm, as described, works for only one output. It does not work “as
is” for multiple outputs. Thus, we have to split our problem into 14 distinct (and as-
sumably independent) function estimation problems, considering each time a different
EMA trajectory as output.

We use the RBF kernel with γ = 0.0045 and select C = 1, ε = 0.1, based on
heuristics found in [8], employing the LibSVM software [9] for our experiments. We,
finally, virtually “combine” the 14 estimators into one “system”.

For evaluating the performance of our system we use two measures. The first one is
the RMS error which is an indication of the overall “distance” between two trajectories.
It is calculated as:

ERMS =

√√√√ 1
N

N∑

i=1

(oi − ti)2 (6)

where N is the number of input-output vector pairs, in the test set, oi is the estimated
value for the articulator channel output, and ti is the real value. The values are rescaled
back to the original domain measurement in millimeters.

The second measure is the correlation score, which is an indication of similarity of
shape and synchrony of two trajectories. It is calculated by dividing their covariance by
the product of their variances:

r =
∑

i(oi − ō)(ti − t̄)√∑
i(oi − ō)2

∑
i(ti − t̄)2

(7)

where ō and t̄ are the mean channel value for the estimated and real articulator position
respectively.

The results of this first experiment are presented in Table 1 and Figure 2.
As a second experiment, and as an attempt to account for the interrelationships

between the EMA trajectories we add PCA to the previous experimental context. We
know that some pairs of trajectories are highly correlated. By PCA, we move to a new
output space where the new trajectories are uncorrelated among each other.

Most of the times PCA is used for data reduction, by “cutting off” components that
correspond to small eigenvalues. This is not our case. We just want to render our data
into an uncorrelated form, so we keep all 14 Principal Components. We perform SVR,
with the exact same parameters as previously, in this new output space and then, at
testing, revert back to our original one. Table 2 shows the results of this experiment.
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Table 1. Performance of the System of Estimators. (First experiment, without PCA).

Articulator RMS Error (mm) Correlation
lower incisor x 1.054 0.479
lower incisor y 1.217 0.807
upper lip x 0.999 0.565
upper lip y 1.327 0.548
lower lip x 1.403 0.499
lower lip y 2.375 0.803
tongue tip x 2.534 0.806
tongue tip y 2.750 0.809
tongue body x 2.339 0.788
tongue body y 2.248 0.814
tongue dorsum x 2.262 0.743
tongue dorsum y 2.573 0.671
velum x 0.455 0.690
velum y 0.397 0.726
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Fig. 2. Real (dashed lines) and estimated (solid lines) articulatory trajectories of fsew0 uttering the
phrase “Clear pronunciation is appreciated.”. The first column is the projection of the articulator’s
movement on the x axis and the second on the y axis. From top to bottom: lower incisor (jaw),
upper lip, lower lip, tongue tip, tongue dorsum, tongue blade and velum.
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Table 2. Performance of the System of Estimators (Second Experiment, with PCA).

Articulator RMS Error (mm) Correlation
lower incisor x 1.053 0.481
lower incisor y 1.200 0.812
upper lip x 1.006 0.559
upper lip y 1.327 0.548
lower lip x 1.329 0.550
lower lip y 2.363 0.805
tongue tip x 2.556 0.802
tongue tip y 2.766 0.807
tongue body x 2.353 0.785
tongue body y 2.226 0.818
tongue dorsum x 2.271 0.740
tongue dorsum y 2.557 0.675
velum x 0.452 0.693
velum y 0.399 0.723

7 Conclusion

We applied Support Vector Regression to the task of mapping the acoustic speech sig-
nal onto EMA trajectories. Our results were comparable to those found in the literature,
even though we used a (selected by a rather ad-hoc procedure) small subset of the data
available to us. We extended our method by employing Principal Component Analy-
sis, in order to account for the interrelationships inherent among the trajectories, with
a slight increase in performance.

In order to improve further our results we should try to better exploit the vast amount
of data in the MOCHA database. This may be done in one of two ways, the first one
being to use more training data. Training time is always an issue, but recent findings
in the machine learning field, such as Cross-Training [10], seem quite promising in the
direction of speeding up things. One second way is to use a more formal way, perhaps by
applying a clustering technique to our input space, in order to select training examples.

Finally, PCA lead to only a slight increase in performance. We expected better.
It may be the case that other data transformations, such as Independent Component
Analysis [11], should also be considered.
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