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Abstract. Electropalatography is a well established technique for
recording information on the patterns of contact between the tongue and
the hard palate during speech. It leads to a stream of binary vectors,
called electropalatograms. We are interested in the mapping from the
acoustic signal to electropalatographic information. We present results
on experiments using Support Vector Classification and a combination
of Principal Component Analysis and Support Vector Regression.

1 Introduction

Electropalatography (EPG) [1] is a widely used technique for recording and an-
alyzing one aspect of tongue activity, namely its contact with the hard palate
during continuous speech. It is well established as a relatively non-invasive, con-
ceptually simple and easy-to-use tool for the investigation of lingual activity
in both normal and pathological speech. An essential component of EPG is a
custom-made artificial palate, which is moulded to fit as unobtrusively as possi-
ble against a speaker’s hard palate. Embedded in it are a number of electrodes
(62 in the Reading EPG system, which is considered herein). When contact oc-
curs between the tongue surface and any of the electrodes a signal is conducted
to an external processing unit and recorded. Typically, the sampling rate of such
a system is 100-200 Hz. Thus, for a given utterance, the sequence of raw EPG
data consists of a stream of binary (1 if there is a contact; -1 if there is not)
vectors with both spatial and temporal structure. Figure 1 shows part of such a
stream. Observation of both temporal and spatial details of contact across the
entire palatal region can be very helpful to identify many phonetically relevant
details of lingual activity.

Electropalatography has been succesfully used to study a number of phenom-
ena in phonetic descriptive work, in studies of lingual coarticulation and in the
diagnosis and treatment of a variety of speech disorders. It has also been sug-
gested that visual feedback from EPG might be used in the context of second
language acquisition.

However, there are difficulties in acquiring EPG data. First, each artificial
palate must be individually manufactured from dental moulds of the speaker.
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Fig. 1. Typical EPG sequence. Black squares indicate a contact between the tongue
and the palate.

Second, the artificial palate in the speaker’s mouth may sometimes hinder their
ability to produce normal speech.

What is suggested here is that some means of estimating EPG information
using only the audio signal (which is far more easier to record and handle) as a
source would be beneficial. To this end, we study the mapping from the acoustic
signal to the EPG vectors, namely the acoustic-to-electropalatographic mapping.
We adopt a machine learning point of view, in the sense that we try to infer the
mapping only from the data, without making a priori use of any kind of speech
production related theoretical intuitions.

2 The MOCHA Database

The MOCHA (Multi-Channel Articulatory) [2] database is evolving in a purpose
built studio at the Edinburgh Speech Production Facility at Queen Margaret
University College.

During speech, four data streams are recorded concurrently straight to a com-
puter: the acoustic waveform, sampled at 16kHz with 16 bit precision, together
with laryngograph, electropalatograph and electromagnetic articulograph data.
EPG provides tongue-palate contact data at 62 normalised positions on the hard
palate, defined by landmarks on maxilla. The EPG data are recorded at 200Hz.

The speakers are recorded reading a set of 460 British TIMIT sentences. These
short sentences are designed to provide phonetically diverse material and capture
with good coverage the connected speech processes in English. All waveforms are
labelled at the phonemic level.

The final release of the MOCHA database will feature up to 40 speakers with
a variety of regional accents. At the time of writing this paper three speakers
are available. For the experiments herein, the acoustic waveform and EPG data,
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as well as the phonemic labels for the fsew0 speaker, a female speaker with a
Southern English accent, are used.

3 Overview of Machine Learning Techniques Used

3.1 C-Support Vector Classification

Given n training vectors xi in two classes and a vector y ∈ Rn such that yi ∈
{−1, 1}, we want to find a decision function that separates the two classes in
an optimal (from a Structural Risk Minimization viewpoint) way [3, 4, 5] . The
decision function that the C-SVC algorithm gives is:

f(x) = sgn

(
n∑

i=1

aiyik(x,xi) + b

)
, (1)

where b is a bias terms and the a coefficients are the solution of the quadratic
programming problem:

maximize W (a) = −1
2

∑
ij

aiajyiyjk(xixj)

subject to 0 ≤ ai ≤ C, i = 1, . . . , n, and
∑

i

aiyi = 0.
(2)

Here C, called the penalty parameter, is a parameter defined by the user and
k(xixj) is a special function called the kernel which serves to convert the data
into a higher-dimensional space in order to account for non-linearities in the
decision function. A commonly used kernel is the Radial Basis Function (RBF)
kernel:

k(x,y) = exp(−γ ‖ x − y ‖2), (3)

where the γ parameter is selected by the user.

3.2 ε-Support Vector Regression

The ε-SVR algorithm [6, 5] generalizes the C-SVC algorithm to the regression
case. Given n training vectors xi and a vector y ∈ Rn such that yi ∈ R, we want
to find an estimate for the fuction y = f(x). According to ε-SVR, this estimate is:

f(x) =
n∑

i=1

(a∗
i − ai)k(xi,x) + b, (4)

where the coefficients ai and a∗
i are the solution of the quadratic problem

maximize

W (a,a∗) = −ε

n∑
i=1

(a∗
i + ai) +

n∑
i=1

(a∗
i − ai)yi − 1

2

n∑
i,j=1

(a∗
i − ai)(a∗

j − aj)k(xixj)

subject to 0 ≤ ai, a
∗
i ≤ C, i = 1, . . . , n, and

n∑
i=1

(a∗
i − ai) = 0. (5)
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C > 0 and ε ≥ 0 are chosen by the user. C may be as high as infinity, while
typical values for ε are 0.1 or 0.001.

3.3 Principal Component Analysis

PCA [7, 1] is a transform that chooses a new coordinate system for a data set
such that the greatest variance by any projection of the data set comes to lie
on the first axis, the second greatest variance on the second axis, and so on.
The new axes are called the principal components. PCA is commonly used for
reducing dimensionality in a data set while retaining those characteristics of the
data set that contribute most to its variance by eliminating the later principal
components.

The direction w1 of the first principal component is defined by

w1 = arg max
‖w‖=1

E{wT x)2} (6)

where w1 is of the same dimension as the data vectors x. Having determined
the direction of the first k − 1 principal components, the direction of the kth
component is:

wk = arg max
‖w‖=1

E

⎧⎨
⎩wT

(
x −

k−1∑
i=1

wiwi
T x

)2
⎫⎬
⎭ . (7)

In practice, the computation of the wi can be simply accomplished using the
sample covariance matrix E{xxT } = C. The wi are then the eigenvectors of C
that correspond to the largest eigenvalues of C.

4 Data Processing

The MOCHA database includes 460 utterances of the fsew0 speaker. In order to
render these data into input-output pairs suitable for our purposes, we proceed
as follows.

First, based on the label files we omit silent parts from the beginning and
end of the utterances. During silent stretches the tongue can possibly take any
configuration, something that could pose serious difficulties to our task.

Next, we perform a standard Mel Frequency Spectral Analysis [8] on the
acoustic signal with the VOICEBOX Toolkit [9], using a window of 16ms (256
points) with a shift of 5ms (this is to match the 200Hz sampling rate of the
EPG data). We use 30 filterbanks and calculate the first 13 Mel Frequency
Cepstral Coefficients. Then, we normalize them in order have zero mean and
unity standard deviation.

In order to account for the dynamic properties of the speech signal and cope
with the temporal extent of our problem, we just use a commonplace in the
speech processing field spatial metaphor for time. That is, we construct input
vectors spanning over a large number of acoustic frames. Based on some previous
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Fig. 2. Distributions of EPG events (a) in tthe training set (b) in the test. The bigger
the square, the bigger the difference between positive and negative examples. Black
squares indicate excess of positive examples and white squares excess of negative
examples.

small-scale experiments of ours, we construct input vectors consisting of the
MFCCs of 17 frames: the frame in question, plus the 8 previous ones, plus the 8
next ones.

Thus, we end up with training examples with a 221-dimensional (17 × 13)
real-valued vector as input and a 62-dimensional binary vector as output. We
split our data into two big halves: the even-numbered utterances constitute an
“extended training set”, and the odd-numbered ones an “extended test set”.
Each one has more than 100.000 examples.

But, since SVR training is a relatively slow process, using the whole “extended
training set” for training would merely be out of the question. We would like
a reduced training set, that is somehow “representative” of the whole corpus.
Knowing (from the label files) the phonemic label of each of our “extended
training set” examples, we randomly select 200 training examples corresponding
to every one of the 44 distinct phonemic labels. Since some phonemic labels have
less than 200 examples in the dataset, we end up with 8686 training examples.

Finally, for our test set, we simply use 10 utterances spanning across our
whole “extended test set”. This test set consists of 5524 examples.

In both our final training and test sets, the distributions of the output among
the EPG points values vary considerably, ranging from EPG points with a nearly
equal number of positive (contacts, value 1) and negative (non-contacts, value -1)
examples, to points with a 100% of examples belonging to one of the two classes.
This fact is depicted graphically in Figure 2.

5 Training and Results

We follow two approaches to the mapping between the MFCCs and the EPG
data. For the first one, we make the working assumption that every EPG event (a
contact or a non-contact at a certain electrode and point in time) is independent
of neighbouring (in space and time) EPG events. Thus, the problem of estimating
EPG patterns, becomes a problem of training 62 binary classifiers.

The C-SVC algorithm then offers a straightforward way to independently deal
with each one of these classification tasks, where the input is the MFCC vector
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Fig. 3. Principal Components of the EPG data. Each value is represented by a square
of size proportional to its absolute value and color black or white whether it is positive
or negative.

(constructed as described previously) and the output is a binary value describing
the activity of the EPG point in question.

We consider the RBF kernel with γ = 0.0045 and select C = 1, based on
heuristics found in [10] The experiments are conducted using the LIBSVM soft-
ware package [11].

For our second approach to the mapping, we consider accounting for the
spatial relationships in the EPG data by applying PCA. We perform PCA on
the “extended training set” and keep the 37 first principal components (depicted
in Figure 3), which are the ones with eigenvalues larger than the 1/100 of the
largest eigenvalue.

PCA transforms the output data by moving them into a new space. In this
space the output values are real, so we have to solve 37 regression problems. We
use ε-SVR for this task.

Just before SVR training we perform two further preprocessing steps on our
(PCA transformed) output data. Firstly we center them so that the mean value
of every channel is zero, and, secondly we scale them by four times their standard
deviation, so that they roughly lie in the interval (−1, 1), something crucial for
SVR training.

For the actual ε-SVR training, we use the RBF kernel with γ = 0.0045 and
select C = 1 and ε = 0.1. In testing, we need to invert the processes of scaling,
centering and PCA.

For assessing the performance of are classifiers (even though we used regres-
sion in our second approach, the final outcome is still a set of classifiers) we
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Fig. 4. Classification Rates for (a) the SVC approach (b) the PCA+SVR approach

Fig. 5. AUCs for (a) the SVC approach (b) the PCA+SVR approach

use two metrics. The first one is the absolute classification rate (in the sec-
ond approach by assigning positive output values as contacts, and negative as
non-contacts), and the second one is the area under the ROC curve (AUC) [12].
The results are presented in Table 1 and Figures 4, 5. The convention used in
the figures is that the size of the black squares is proportional to the value of
the metric, while white squares indicate EPG points where the specific metric is
meaningless (i.e. there is no AUC when all the examples in the test set belong
the same class).

6 Conclusion

We applied two methods to the acoustic-to-electropalatographic mapping task,
the first of which (SVC) does not take into account the spatial interrelationships
inherent in the EPG data, while the second one (PCA+SVR) does.

The chance level (defined as the average percentage of the class with the
most examples among the EPG points) of the data in the test set we used was
85,60%. Both the methods we applied exceed by far this chance level. For the
SVC approach the average classification rate is 92,34%, and for the PCA+SVR
approach 92,44%.

Between the two approaches, the differences in performance in terms of clas-
sification rates is small. The PCA+SVR approach improves upon SVC’s classifi-
cation rate only by 0,1%. Nevertheless, the ROC curves (with the exception of a
couple of EPG points) are in general much better for the PCA+SVR, leading to
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Table 1. Performances of the sets of classifiers in terms of Classification Rates and
AUCs. Also shown the percentages of contacts in the training and test sets.

Training Set Test Set SVC PCA+SVR
EPG Point % Contacts % Contacts Class. Rate AUC Class. Rate AUC

1 16,39 25,53 86,50 0,80 87,56 0,93
2 9,73 16,56 87,65 0,72 88,49 0,93
3 4,02 6,95 93,21 0,54 93,72 0,85
4 8,85 17,20 85,16 0,61 86,12 0,88
5 18,26 30,90 85,63 0,80 86,73 0,94
6 24,41 36,75 86,77 0,85 86,93 0,93
7 26,80 38,78 83,87 0,82 83,74 0,92
8 12,66 15,06 88,38 0,74 88,07 0,88
9 7,52 8,64 92,32 0,59 91,96 0,88
10 3,64 3,86 96,20 0,44 96,18 0,86
11 3,48 4,38 95,49 0,43 95,49 0,74
12 10,17 12,51 89,34 0,64 89,68 0,84
13 24,56 36,35 83,73 0,81 83,80 0,93
14 38,61 49,64 84,29 0,84 83,69 0,92
15 44,02 55,70 87,13 0,87 86,55 0,94
16 9,46 7,46 93,25 0,60 93,12 0,84
17 1,54 1,41 98,57 0,43 98,53 0,59
18 0,46 0,52 99,48 0,41 99,44 0,54
19 0,93 1,19 98,81 0,39 98,75 0,72
20 2,75 3,01 96,92 0,51 96,90 0,70
21 10,98 12,65 89,68 0,59 89,43 0,81
22 50,43 61,62 87,38 0,88 87,64 0,94
23 40,24 47,07 84,43 0,84 84,76 0,92
24 2,60 1,18 98,82 0,43 98,82 0,83
25 0,22 0,24 99,76 0,80 99,76 0,53
26 0,01 0,00 100,00 - 100,00 -
27 0,06 0,18 99,82 0,80 99,82 0,39
28 0,56 0,49 99,51 0,56 99,51 0,69
29 7,03 6,97 93,54 0,51 93,10 0,80
30 39,17 48,21 82,35 0,81 81,88 0,91
31 54,93 59,92 88,00 0,88 88,49 0,95
32 10,47 8,85 93,54 0,62 93,28 0,89
33 0,10 0,00 100,00 - 100,00 -
34 0,00 0,00 100,00 - 100,00 -
35 0,00 0,00 100,00 - 100,00 -
36 0,16 0,18 99,82 0,80 99,82 0,91
37 10,76 9,41 92,98 0,66 92,99 0,92
38 68,77 71,54 91,75 0,92 91,60 0,97
39 79,33 77,34 91,02 0,87 90,41 0,94
40 28,63 24,80 86,01 0,75 85,97 0,91
41 0,67 0,67 99,33 0,29 99,33 0,90
42 0,01 0,00 100,00 - 100,00 -
43 0,00 0,00 100,00 - 100,00 -
44 3,50 2,41 97,52 0,43 97,59 0,86
45 39,90 37,74 84,12 0,80 85,03 0,93
46 90,24 88,90 94,21 0,82 93,72 0,94
47 92,44 90,39 91,67 0,67 91,71 0,85
48 43,33 39,66 80,52 0,76 81,77 0,90
49 4,82 5,38 94,73 0,40 94,73 0,86
50 0,25 0,18 99,82 0,21 99,82 0,88
51 1,66 1,67 98,33 0,49 98,37 0,88
52 9,84 9,49 90,80 0,51 91,13 0,85
53 69,12 69,37 84,90 0,82 84,79 0,92
54 97,54 98,21 98,21 0,90 97,18 0,90
55 93,84 92,85 93,79 0,63 94,41 0,86
56 85,74 84,32 86,08 0,52 86,51 0,81
57 11,19 10,90 90,53 0,50 90,35 0,87
58 1,51 1,39 98,61 0,40 98,48 0,84
59 5,45 6,03 94,77 0,50 94,68 0,92
60 26,62 23,57 80,25 0,61 81,44 0,83
61 87,95 85,48 87,22 0,57 87,93 0,81
62 89,79 87,44 88,50 0,65 89,30 0,79

Overall 92,34 0,64 92,44 0,85

a remarkable increase in the average AUC, as shown in Table 1. Figure 6 shows
the ROC curves for some characteristic EPG points.

So, it is mainly the improvement of the ROC curves achieved with the
PCA+SVR approach, that makes it a better choice of an approach between
the two. This agrees with the intuition that the PCA+SVR approach should be
better, since it takes into account the spatial structure of the problem at hand.
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Fig. 6. ROC curves for some EPG points. Dashed-dotted curves correspond to the
SVC approach, solid curves to the PCA+SVR approach.

One drawback of our experimental setup was that we trained our machines
using only a small set of training examples, selected by a rather ad hoc procedure.
As a future work direction, we might employ a more structured approach (i.e.
clustering) in order to select training examples. Or, we might directly experiment
with more data. Training time is always an issue, but recent findings in the
machine learning field, such as Cross-Training [13], seem quite promising in the
direction of speeding up things.

As a second future work direction, we could try to account for the temporal
structure of our problem, i.e. the fact that the activity of a certain EPG point
is depended on its activity at previous time instants. This is a difficult problem,
though there are promising proposals from the machine learning field, such as
the HMM–SVM method [14].
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