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Abstract

We report work on mapping the acoustic speech signal,
parametrized using Mel Frequency Cepstral Analysis, onto
electromagnetic articulography trajectories from the MOCHA
database. We employ the machine learning technique of Sup-
port Vector Regression, contrasting previous works that applied
Neural Networks to the same task. Our results are compara-
ble to those older attempts, even though, due to training time
considerations, we use a much smaller training set, derived by
means of clustering the acoustic data.

1. Introduction
The acoustic-to-articulatory mapping [1, 2], also termed
acoustic-to-articulatory inversion of speech, is a special speech
processing related problem that has attracted the attention of
several researchers for many years now. It refers to the esti-
mation of articulatory (speech production related) information
using solely the speech signal as an input source. A succesful
solution could find numerous applications, such as helping in-
dividuals with speech and hearing disorders by providing visual
feedback, very low bit-rate speech coding and the possibility of
improved automatic speech recognition.

In the past, the articulatory features used in such a context
were mostly inferred by the corresponding acoustic data using
vocal-tract models, synthesis models, or linguisting rules. But
recent technologies have made it possible to record actual artic-
ulator movements in parallel with speech acoustics in a mini-
mally invasive way. This “real” human data is arguably prefer-
able to older techniques, where additional complications may
be imposed by intrinsic flaws of the models themselves.

One of the forementioned technologies is the Electromag-
netic Misdagittal Articulography (EMMA) or Electromagnetic
Articulography (EMA). Roughly speaking, for the acquisition
of EMA data, sensor coils are attached to the human subject,
on specific places on the lips, the teeth, the jaw, and the soft
palate (velum). Then the human subject wears a special helmet
which produces an alternating magnetic field that records the
position of the coils at end points of small fixed-size time inter-
vals. The outcomes are trajectories that illustrate the movement
of the coils. Usually, there are two trajectories for each coil,
one for the movement in the front-back direction of the head,
and one for the movement in the top-bottom direction.

In this paper we follow Richmond’s work [1], who pro-
posed a quite succesful mapping of the speech signal onto EMA
data, using Neural Networks (Multilayer Perceprtons and Mix-
ture Density Networks). We study an alternative –Machine
Learning– approach using Support Vector Regression, a more
recent and very promising method. We use the same dataset as
Richmond (though we finally arrive at a significantly smaller
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ng set), namely the fsew0 speaker data from the MOCHA
e.

2. The MOCHA Database

MOCHA (Multi-Channel Articulatory) [3] database is
ing in a purpose built studio at the Edinburgh Speech Pro-
n Facility at Queen Margaret University College.

uring speech, four data streams are recorded concurrently
ht to a computer: the acoustic waveform, sampled at
z with 16 bit precision, together with laryngograph, elec-
latograph and electromagnetic articulograph data. The ar-
tory channels include EMA sensors directly attached to
pper and lower lips, lower incisor (jaw), tongue tip (5-

from the tip), tongue blade (approximately 2-3cm pos-
to the tongue tip sensor), tongue dorsum (approximately
posterior from the tongue blade sensor), and soft palate.

channels for every sensor are recorded at 500Hz: the po-
ing on the x-axis (front-back direction) and on the y-axis
ottom direction).

he speakers are recorded reading a set of 460 British
T sentences. These short sentences are designed to pro-
honetically diverse material and capture with good cover-
e connected speech processes in English. All waveforms
belled at the phonemic level.

he final release of the MOCHA database will feature up
speakers with a variety of regional accents. At the time

iting this paper two speakers are available, one male with
thern English accent and one female with a Southern En-
accent. For the experiments described herein, the acoustic
form and EMA data, as well as the phonemic labels for the
e speaker, fsew0, are used.

3. Support Vector Regression

-SVR algorithm [4] is a generalization of the better known
ort Vector Classification algorithm [5] to the regression
Given n training vectors xi and a vector y ∈ Rn such that
R, we want to find an estimate for the function y = f(x)

is optimal from a Structural Risk Minimization view-
. According to ε-SVR, this estimate is:

f(x) =
nX

i=1

(a∗
i − ai)k(xi,x) + b, (1)

b is a bias term and k(xixj) is a special function called
rnel. The coefficients ai and a∗

i are the solution of the



quadratic problem

maximize

W (a, a∗) = −ε

nX
i=1

(a∗
i + ai) +

nX
i=1

(a∗
i − ai)yi

−1

2

nX
i,j=1

(a∗
i − ai)(a

∗
j − aj)k(xixj)

subject to

0 ≤ ai, a
∗
i ≤ C, i = 1, . . . , n,

nX
i=1

(a∗
i − ai) = 0,

(2)

where C > 0 and ε ≥ 0 are parameters chosen by the user. The
“penalty parameter” C may be as high as infinity, while usual
values for ε are 0.1 or 0.01.

The kernel function serves to convert the data into a higher-
dimensional space in order to account for non-linearities in the
estimate function. A commonly used kernel is the Radial Basis
Function (RBF) kernel:

k(x,y) = exp(−γ ‖ x − y ‖2), (3)

where the γ parameter is selected by the user.

4. Data Processing
The MOCHA database includes 460 utterances of the fsew0
speaker. In order to render these data into input-output pairs
suitable for function estimation, we process them as follows.

First, based on the label files we omit silent parts from the
beginning and end of the utterances. During silent stretches the
articulators can possibly take any configuration, something that
could pose serious difficulties to our task.

Next, we perform a standard Mel Frequency Spectral Anal-
ysis [6] on the acoustic signal with the VOICEBOX Toolkit [7],
using a window of 16ms (256 points) with a shift of 5ms. We
use 30 filterbanks and calculate the first 13 Mel Frequency Cep-
stral Coefficients. Then, we normalize them in order have zero
mean and unity standard deviation.

In order to account for the dynamic properties of the speech
signal and cope with the temporal extent of our problem, we
just use the commonplace in the speech processing field spatial
metaphor for time. That is, we construct input vectors spanning
over a large number of acoustic frames. Based on some previ-
ous small-scale experiments of ours, we construct input vectors
consisting of the MFCCs of 17 frames: the frame in question,
plus the 8 previous ones, plus the 8 next ones.

The steps taken to process the EMA data are similar to those
described by Richmond. First, the EMA data are resampled to
match the frameshift of the acoustic coefficients (5ms). At the
same time, they are smoothed, using a moving average window
of 40ms so that recording noise is eliminated (after all, it is
known that EMA trajectories vary relatively slowly with time).

The mean values of the EMA trajectories calculated for ev-
ery utterance vary considerably during the recording process.
There are two kinds of variation: rapid changes, due to the
phonemic content of each utterance, and slowly moving trends,
mainly due to the fact that the subject’s articulation adapts in
certain ways during the recording session. It is beneficial to re-
move from the EMA data the second type of variation, while
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e 1: Mean values of the “velum height” (vy) channel
s the utterances in the recording session. The dashed line
s the real means and the solid line their filtered version

is actually used for normalization.

ng the first. Thus, we calculate the means, low-pass fil-
em, and subtract those filtered means from the EMA data.
igure 1 for an explanation).

hus, we end up with training examples, each consisting of
-dimensional (17 × 13) real-valued vector as input and
dimensional real-valued vector as output. We split our
into two big halves: the even-numbered utterances con-

what we call an “extended training set”, and the odd-
ered ones an “extended test set”. Each one contains more
00.000 examples.

5. Training Set Selection
ort Vector Regression training is a relatively slow process.
ing time increases with the cube of the amount of train-
ta. Using our whole “extended training set” would be far
uch time consuming. Therefore, we would like a reduced
ng set.
n the other hand, we need this reduced training set to be

how “representative” of the whole corpus. If we were to
say, 10 random utterances and use for training we would
bly lose important information.

order to choose representative examples we employ clus-
in our input–MFCC space. We use a rather simple clus-
algorithm, namely K-means [8]. We ask for 5000 indi-

l clusters and the algorithm returns 4587. Then, we find
amples with the minimum distance from the centers of
clusters. These examples constitute the training set which
tually use.

6. SVR Training and Results
-SVR algorithm, as described, works for only one output.
s not work “as is” for multiple outputs. Thus, we have
it our problem into 14 distinct (prefferably independent or
st uncorrelated) function estimation problems, considering
time a different trajectory as output.
ust before SVR training we perform some further prepro-
g steps on our output data, mainly to remove lower-order

tical properties. The first step is to center the data so that



the mean value of every channel is zero. This may seem redun-
dant, considering the mean normalization previously described,
but it is desirable that the means across the training set are zero.

The second step is to whiten the data [8] so that its covari-
ance matrix become an identity matrix. This is accomplished
by

Ywhitened =
ş p

E{Y Y T }
ť −1

Y (4)

where Y is the data table (where every example is row) and the

square root of a matrix is defined so that M =
√

M
T√

M .
The third step is to scale the data by four times their stan-

dard deviation, so that they roughly lie in the interval (−1, 1),
something crucial for SVR training.

In order to train our 14 function estimators, we use the RBF
kernel with γ = 0.0045 and select C = 1, ε = 0.1, based on
heuristics found in [9], employing the LibSVM software [10]
for our experiments. We, finally, virtually “combine” the 14
estimators into one “system”.

After testing our estimators we invert the processes of scal-
ing, whitening and centering. Finally, we smooth the output
trajectories using again a moving average window of 40ms

For evaluating the performance of our system we use two
measures. The first one is the RMS error which is an indication
of the overall “distance” between two trajectories. It is calcu-
lated as:

ERMS =

vuut 1

N

NX
i=1

(oi − yi)2 (5)

where N is the number of input-output vector pairs, in the test
set, oi is the estimated value for the articulator channel output,
and yi is the real value.

The second measure is the correlation score, which is an
indication of similarity of shape and synchrony of two trajecto-
ries. It is calculated by dividing their covariance by the product
of their variances:

r =

P
i(oi − ō)(yi − ȳ)pP

i(oi − ō)2
P

i(yi − ȳ)2
(6)

where ō and ȳ are the mean channel value for the estimated and
real articulator position respectively. .

For testing our system we use 10 utterances spanning our
whole “extended test set”. Our overall results for this test set
are presented in Table 1. Figure 2 shows the real and estimated
trajectories for a single utterance. For the results in Table 2 we
split the examples of our test set according to which phoneme
they correspond to, and present the performance of our system
of estimators on some of these small–phoneme test sets.

7. Conclusion
We applied Support Vector Regression to the task of mapping
the acoustic speech signal onto EMA trajectories. Our results
were comparable to those found in the literature, even though
we used for training a rather small subset of the data available
to us. This subset was selected by clustering in the input space.

Analysis of the results by phoneme, reveals that the system
of function estimators we end up with behaves quite differently
for different phonemes. Some EMA channels are estimated bet-
ter for specific phonemes, while others are not. It may be the
case that some phonemes provide for a stronger “link” between
the Mel Frequency Cepstral Coefficients and particular EMA
trajectories.
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wer incisor x 1.003 0.511
wer incisor y 1.076 0.826

pper lip x 0.979 0.583
pper lip y 1.278 0.597
wer lip x 1.358 0.540
wer lip y 2.309 0.828
ngue tip x 2.464 0.812
ngue tip y 2.589 0.828
ngue body x 2.323 0.796
ngue body y 2.230 0.816
ngue dorsum x 2.184 0.760
ngue dorsum y 2.588 0.668

elum x 0.431 0.723
elum y 0.376 0.753

ble 1: Overall performance of the system of estimators.
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e 2: Real (dashed lines) and estimated (solid lines) artic-
y trajectories of fsew0 uttering the phrase “Clear pronun-
n is appreciated.”, plotted against time in milliseconds.
top to bottom: lower incisor (jaw), upper lip, lower lip,
e tip, tongue dorsum, tongue blade and velum. First are
n the projections of the articulator’s movement on the x
followed by those on the y axis.



lix liy ulx uly llx lly ttx tty
h 0.416 0.351 0.441 0.341 -0.031 0.926 0.619 0.473
ii 0.446 0.822 0.537 0.821 0.725 0.845 0.787 0.752
i 0.513 0.796 0.193 0.522 0.448 0.817 0.541 0.630
l 0.641 0.775 0.540 0.072 0.683 0.864 0.700 0.651
r -0.146 0.587 0.708 0.202 0.047 0.766 0.576 0.403
p 0.190 0.307 0.371 0.534 0.177 0.831 0.790 0.673
oo 0.530 0.260 -0.335 0.041 0.261 0.014 0.910 0.951
s -0.211 0.392 0.368 0.444 0.195 0.361 0.358 0.279
k 0.252 0.683 0.500 0.330 0.605 0.581 0.764 0.629
m 0.530 0.479 0.486 0.029 0.589 0.708 0.767 0.679
f -0.502 0.604 0.352 0.257 -0.315 0.492 0.690 0.667
d 0.445 0.265 0.818 0.013 0.588 0.730 0.476 0.154
g 0.297 0.411 0.773 0.204 0.654 0.918 0.681 0.954
z 0.016 0.280 0.322 0.094 0.151 0.448 0.191 0.401
e 0.596 0.430 0.582 0.706 0.744 0.725 0.846 0.699
sh 0.130 0.654 0.513 0.530 0.451 0.748 0.509 0.033
t 0.374 0.758 0.480 0.461 0.268 0.690 0.421 0.609
y -0.013 0.076 -0.426 0.038 -0.212 0.550 0.454 0.420
o 0.769 0.827 0.679 0.716 0.793 0.811 0.846 0.937
n -0.058 0.573 0.339 -0.121 0.197 0.729 0.782 0.473
a 0.192 0.657 0.791 0.629 0.797 0.706 0.892 0.527
v 0.787 0.786 0.403 0.594 0.317 0.201 0.836 0.909
uh 0.808 0.882 0.798 0.378 0.092 0.715 0.771 0.952
ou 0.776 0.933 0.034 0.798 0.548 0.439 0.225 0.715
iy 0.586 0.631 0.548 0.229 0.052 0.919 0.902 0.836
ei 0.581 0.356 0.775 -0.061 0.955 -0.188 0.617 0.640
th -0.063 0.978 0.714 0.873 -0.529 0.534 0.097 0.159
b 0.748 0.850 0.314 0.222 0.316 0.411 0.880 0.714
@ 0.178 0.717 0.540 0.646 0.212 0.709 0.911 0.841

Table 2: Correlation scores between real and estimated articulatory trajec

Regarding future work directions, it is probable that using
more training data would improve performance. Training time
is always an issue, but recent findings in the machine learning
field, such as Cross-Training [11], seem quite promising in the
direction of speeding up things.

Finally, the temporal dimension of the problem might
be taken more rigorously into account. There are promis-
ing proposals in that area as well, such as the HMM–SVM
method [12].
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