
CONTRIBUTION TO STATISTICAL ACOUSTIC-TO-EMA MAPPING

Asterios Toutios1 and Konstantinos Margaritis2

1 LORIA, Nancy, France
phone: + 33 383 59 30, fax: + 33 383 55 25 73, email: asterios.toutios@loria.fr

2 Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
phone: + 30 2310 891 891, fax: + 30 2310 891846 , email: kmarg@uom.gr

ABSTRACT
The availability of large corpora of parallel acoustic and ar-
ticulatory data has enabled the use of statistical, data-driven,
methods in the context of the speech inversion problem. This
paper explores the use of Support Vector Regression for the
mapping from acoustic parameters to electromagnetic artic-
ulograph trajectories and compares the outcoming results
against those presented in other studies on the same prob-
lem and dataset.

1. INTRODUCTION

Acoustic-to-articulatory speech inversion, that is, the re-
covery of articulatory information from the corresponding
acoustic speech signal is a problem that has drawn con-
siderable attention in the speech processing community for
several reasons. A successful solution may prove benefi-
cial for automatic speech recognition and synthesis, be of
great potential interest for phonetic theory and speech sci-
ence, offer articulatory feedbacks for purposes of speech
therapy and language acquisition, and enable cheap visual-
izations of speech in communication and entertainment ap-
plications. The problem is challenging, due to the nonlinear-
ity and nonuniqueness of the mapping.

Older studies on speech inversion [1] usually relied on
articulatory synthesis models, that were built using sparse
data and a large degree of intuition regarding the process
of speech production. However, the recent development and
improvement of articulatory data acquisition techniques, like
Electromagnetic Articulography (EMA) [2], and the result-
ing availablility of large amounts of acoustic and articula-
tory data recorded in parallel, has created a new option: the
training of statistical learning functions to map acoustic onto
articulatory information.

In this paper, the inversion mapping from acoustic pa-
rameters to EMA information is addressed. As a mapping
method, Support Vector Regression (SVR), a relatively new
nonlinear method which has been shown to produce state of
the art results for several other supervised regression learn-
ing problems [3], is proposed. The mapping addresses only
the static components of the EMA parameters; that is, no at-
tempt is done to estimate and incorporate dynamical features
of the EMA data. Also, as opposed to several other works on
speech inversion (e.g. [4]), no constraints on phonetic infor-
mation are used.

This system is compared against those presented by Rich-
mond et al. [5] (also Richmond [6]), Toda et al. [7] and
Richmond [8]. It is demonstrated that the system performs
better than the corresponding baseline systems (which ad-
dress exactly the same problem of estimating static compo-
nents of the EMA data) and comparably to the final systems

(which introduce further constraints to the mapping). The
main reason for choosing these particular works to compare
with is that they use the same dataset; namely, data from the
MOCHA database.

It should be noted beforehand that the method presented
herein does not explicitly deal with the nonuniqueness prop-
erty of the speech inversion problem. In contrast with other
speech inversion methods that produce several articulatory
hypotheses for a single speech segment (e.g [9]), the method
presented here leads to a single estimation of the articulatory
state. An implicit assumption we make is that the articulatory
strategy employed by each speaker in the MOCHA database
may not change significantly during the recording session.

The rest of the paper is organized as follows: Section 2
briefly describes Support Vector Regression, in particular the
ε-SVR algorithm. Section 3 describes the data and their pro-
cessing in order to derive input-output vectors suitable for
the regression algorithm. Section 4 presents results and com-
pares them against those found in the aforementioned stud-
ies. Section 5 presents our conclusions.

2. SUPPORT VECTOR REGRESSION

Based on n real d-dimensional training input vectors xi ∈
Rd , i = 1, . . . ,n, and associated real output scalar values yi ∈
R, i = 1, . . . ,n, the basic ε-SVR algorithm [3] seeks to esti-
mate a linear function

f (x) = 〈w,x〉+b (1)

(where w is a d-dimensional real vector, b is a real scalar, and
〈., .〉 denotes the inner product), such that for previously un-
seen data (x,y) ∈ Rd ×R, generated from the same underly-
ing process as the training data, the value f (x) approximates
the value y as precisely as possible. In other words, the func-
tion f should be able to generalize well to previously unseen
data, as long as they apply to the same (unknown) probability
distribution P(x,y) as the training data. In order to achieve
this, the ε-SVR algorithm attempts to minimize the quantity
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where

|yi − f (xi)|ε = max{0, |yi− f (xi)|− ε} (3)

is the so-called ε-insensitive loss function, with ε being a
small positive real scalar, while C is a positive real scalar and
‖.‖ denotes the norm. The parameter C determines the trade-
off between the regularization factor ‖w‖2 and the mean
training error 1
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It can be shown [10] that the minimization of (2) is equiv-
alent to the following quadratic optimization problem:

maximize
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where the a,a∗ are Lagrange multipliers. The estimated func-
tion is then

f (x) =
n

∑
i=1

(a∗i −ai)〈xi,x〉+b (5)

where a,a∗ are the solutions to the optimization problem (4)
and b is easily calculated from the KKT conditions for the
problem [10]. There are three cases for the optimal val-
ues of a,a∗, for every i: it will be either ai = 0,a∗i 6= 0, or
ai 6= 0,a∗i = 0 or ai = a∗i = 0. For the first two cases, the
corresponding training input vectors are called the support
vectors. Apparently, the estimated function (5) depends only
on these. Usually the support vectors are only a fraction of
the training input vectors, and so, the solution that the ε-SVR
algorithm leads to is sparse on the training data.

As presented so far, the ε-SVR algorithm leads to a linear
regression function. It is extended to the nonlinear case with
the introduction of a nonlinear mapping x 7→ Φ(x) of the
input vectors from their original space to a new one, called
the feature space. Practically, this is achieved by substituting
the inner products in Equations (4) and (5), with a kernel
function k(x,x′).

A usual choice for the kernel function is the gaussian ker-
nel

k(x,x′) = exp(−γ‖x−x
′‖2), (6)

where the parameter γ is to be selected by the user (and so
are the parameters C and ε in the optimization problem).

3. DATA DESCRIPTION AND PROCESSING

The MOCHA database [11] includes four data streams
recorded concurrently: the acoustic waveform (that is later
labeled at the phonemic level), laryngograph, electropalato-
graph and electromagnetic articulograph data. The speak-
ers are recorded reading a set of 460 British TIMIT-style
sentences, which are designed to provide phonetically di-
verse material and capture with good coverage the connected
speech processes in English. The original plan was that the
database would feature up to 40 speakers with a variety of re-
gional accents, but at the time of conducting the experiments
presented in this paper only from two speakers only where
checked and available.

MOCHA includes electromagnetic articulography
(EMA) information for the coils shown in Figure 1. The two
coils at the bridge of the nose and the upper incisors are used
for the normalization of the data from the rest. Seven coils,
located at the lower incisors (li), upper lip (ul), lower lip
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Figure 1: EMA sensor coils in the MOCHA database.

(ll), tongue tip (tt), tongue blade (tb), tongue dorsum (td)
and velum (v), offer useful location information, namely
trajectories of the projections of their position on two axes
on the midsagittal plane: one with direction from the front
to the back of the head (x-axis) and one with direction from
the bottom to the top of the head (y-axis). In the rest of
this paper, the information flows from individual coils on
individual axes will be referred to as EMA channels and will
be designated with the initial letters of the corresponding
articulator, using the the axis name as a subscript; e.g.
channel lix will refer to the projection of the position of the
coil placed on the lower incisors on the horizontal axis.

We process these data in a similar way as described in [6].
First, based on the label files, all EMA data corresponding to
silent parts from the beginning and end of the utterances are
omitted. During silent stretches the articulators can possi-
bly take any configuration, something that could pose seri-
ous difficulties to the task at hand. The EMA trajectories are
then resampled from 500 Hz to 200 Hz. Since the articulators
move relatively slowly, crucial information is not lost. At the
same time the trajectories are smoothed, using a low-pass fil-
ter in order to lessen the effect of measurement noise.

The mean values of the EMA trajectories calculated for
every utterance vary considerably during the recording pro-
cess. There are two kinds of variation: rapid changes, due to
the phonemic content of each utterance, and slowly moving
trends, mainly due to the fact that the subject’s articulation
adapts in certain ways during the recording session [6]. It
is useful to remove from the EMA data the second type of
variation, while keeping the first, which is achieved by sub-
tracting a low-passed filtered version of the channel means
from the EMA data.

Finally, the values of the channels are centered at zero
and scaled by four times their standard deviations so that
their vast majority falls in the interval (−1,1) (this is a detail
relevant to the ε-SVR software implementation used).

Regarding the acoustic speech signal silent parts from the
beginning and end of the utterances are again omitted. Per-
ceptual Linear Predictive analysis [12] is performed on the
acoustic signal with the HTK Toolkit [13], using a Hamming
window of 16ms (256 points – the speech signal is sampled
at 16 kHz) with a shift of 5ms (to match the 200 Hz sampling
rate of the EMA trajectories). 12 cepliftered MF-PLPs [14]



plus the logarithmic energy of the signal comprise the vector
of parameters extracted from every speech frame. Those pa-
rameters are then normalized across the whole dataset so that
they have zero mean and unity standard deviation.

Input vectors spanning over a large number of acoustic
frames are constructed. These vectors include the acoustic
parameters of 17 frames: the frame in question, plus 8 previ-
ous ones, plus 8 following ones. The time shift between adja-
cent frames for this construction is 10ms (that is, one in two
of the previously derived vectors of parameters are used for
this construction). Thus, every 221-dimensional input vec-
tor includes information corresponding to roughly 160 ms of
speech. Small scale experiments indicated that this was an
optimal construction for the task at hand.

4. EXPERIMENTS AND RESULTS

Considering every EMA channel as a separate, independent
case, the problem of mapping the acoustic vectors derived
from the speech signal onto EMA information becomes a se-
ries of fourteen distinct regression problems. The ε-SVR al-
gorithm is called upon in order to solve them.

First, only data from the fsew0 speaker of the MOCHA
database, a female with a southern English accent, are con-
sidered. Out of the 460 utterances, 368 are chosen to con-
stitute the training set. These correspond to 198,730 input-
output examples for every EMA channel. In order to reduce
training times, a smaller practical training set (39,746 exam-
ples) is constructed by selecting the first out of every five con-
secutive candidate training examples (in a way, an amount of
redundancy present in the information among neighboring
input-output patterns is assumed). This latter set is actually
used for training the ε-SVR algorithm.

46 utterances (25,022 examples) constitute the test set,
and 46 are put aside. Care is taken, so that the utterances se-
lected for each set correspond exactly with the ones used by
Richmond [6], in order to have a direct comparison between
the approaches (the 46 sentences that are put aside actually
correspond to Richmond’s development set).

The gaussian kernel is used with the ε-SVR algorithm,
with γ = 1/221 (221 is the dimensionality of the input vec-
tors). The other parameters of the algorithm are chosen as
C = 0.5, ε = 0.05. Again, small scale experiments indicated
that these are near optimal choices (“near” meaning that a
deeper search would not lead to significant improvement of
the results). The LibSVM software [15] is employed for the
implementation of the method.

At testing, after both the actual values of the channels yi
and the corresponding values of the estimate function f (xi)
are scaled back by multiplying by four times the standard
deviation of the corresponding channel, the RMS error over
the whole test set is calculated as:

ERMS =

√

1
m

m

∑
i=1

( f (xi)− yi)
2 (7)

where m is the number of examples in the test set. The RMS
error measures the overall distance between the original and
estimated trajectories. The Pearson correlation, calculated
as:
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√
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(
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(8)

channel ERMS r
lix 0.87 0.603
liy 1.13 0.820
ulx 0.93 0.621
uly 1.09 0.744
llx 1.17 0.637
lly 2.34 0.816
ttx 2.21 0.834
tty 2.24 0.875
tbx 2.07 0.831
tby 1.88 0.871
tdx 1.94 0.812
tdy 1.97 0.798
vx 0.36 0.847
vy 0.34 0.834
average 1.47 0.782

Table 1: Cumulative results on the test set for speaker fsew0.
RMS values are measured in millimeters.

channel ERMS r
lix 0.49 0.711
liy 0.88 0.821
ulx 0.63 0.642
uly 1.08 0.755
llx 1.06 0.747
lly 1.62 0.849
ttx 2.48 0.794
tty 2.84 0.834
tbx 2.19 0.788
tby 1.91 0.858
tdx 2.13 0.768
tdy 1.85 0.824
vx 0.44 0.766
vy 0.97 0.674
average 1.47 0.774

Table 2: Cumulative results on the test set for speaker msak0.
RMS values are measured in millimeters.

(where overlines denote mean values over the test set), quan-
tifies the similarity in shape and synchrony between the tra-
jectories.

These results are presented in Table 1. Figures 2 and 3
show the actual and estimated trajectories for a single utter-
ance from the test set. The figures include corresponding
phonemes (with IPA symbols) based the phonemic transcrip-
tions provided with the MOCHA database. Care should be
taken however: the phonemic labeling of MOCHA is the re-
sult of an automatic alignment process and considered prone
to errors.

The process described so far is repeated using, both in
training and testing, data from the msak0 speaker of the
MOCHA database, a male with a northern English accent.
Table 2 presents these results.

The results in Tables 1 and 2 may be compared against
those reported in previous attempts on the mapping using the
same dataset. Richmond et al. in [5] (also Richmond [6])
used a Multilayer Perceptron to map from filterbank coeffi-
cients to EMA information for the fsew0 speaker. They sam-
pled the EMA trajectories at 100 Hz, as opposed to the 200
Hz sampling rate used in this paper. They reported an aver-



Figure 2: Actual (dashed lines) and estimated (solid lines)
EMA trajectories (X-coordinates) when speaker fsew0 utters
the phrase: “The speech symposium might begin on Mon-
day”. Vertical axes: value in millimeters of X-coordinate of
coil in question using the mean position of coil on upper in-
cisors as origin. Horizontal axes: time in seconds. Channel
names are shown in the top-left corner of the boxes.

age (over the fourteen channels) RMS error of 1.62 mm and
an average Pearson correlation of 0.739. As a second step
of their approach they employed Mixture Density Networks
reporting a relative increase of 9.3% on a measured average
likelihood score over the MLP. As already mentioned, the test
set used in this paper consists of the exact same utterances as
in Richmond et al.

Toda et al. [7] also sampled the EMA trajectories at 100
Hz. As their baseline experiment they used a Gaussian Mix-
ture Model based mapping algorithm in order to map mel-
cepstral coefficients to the static EMA features. They re-
ported average RMS errors of 1.63 mm for speaker fsew0
and 1.54 mm for speaker msak0. They did not choose a spe-
cific test set; they rather reported cross validation results.

Both Richmond (in [6]) and Toda et. al smoothed the
estimated trajectories using a series of low-pass filters with
incremental cutoff frequencies and, independently for each
EMA channel, selected the cutoff frequency that minimized
the RMS error. This lead Richmond to an average error of
1.57 mm (average correlation was 0.758) and Toda et. al
to 1.49 mm, for the fsew0 case. Application of the same
strategy to the results of the ε-SVR algorithm used in this
paper leads to the results presented in Table 3, for speaker

Figure 3: Actual (dashed lines) and estimated (solid lines)
EMA trajectories (Y-coordinates) when speaker fsew0 utters
the phrase: “The speech symposium might begin on Mon-
day”. Vertical axes: value in millimeters of Y-coordinate of
coil in question using the mean position of coil on upper in-
cisors as origin. Horizontal axes: time in seconds. Channel
names are shown in the top-left corner of the boxes.

fsew0.
Toda et al. went on to incorporate dynamic features in

their approach, via a parameter generation algorithm based
on Maximum Likelihood Estimation. They achieved average
RMS errors of 1.45 mm before smoothing, and 1.44 mm after
smoothing on speaker fsew0.

Quite recently, Richmond [8] reported the introduction
of dynamic features to his MDN setup. He reported results
for EMA channels ttx (RMS error 2.22, correlation 0.84), tty
(2.31, 0.87), tbx (2.13, 0.82), tby (1.93, 0.86), tdx (1.91, 0.82)
and tdy (1.92, 0.81).

5. CONCLUSION

This paper demonstrated that the application of Support
Vector Regression to the task of estimating EMA trajecto-
ries from the speech signal in a speaker-dependent setup is
promising, based on the comparison of the results against
those achieved in other studies in the literature using other
statistical learning methods. The method considered only
static features of the EMA information. The results presented
might be improved with a further introduction of dynamic or
phonetic constraints.

In our experimental setup, the training parameters (C, ε ,



channel cutoff ERMS r
lix 2.0 0.86 (2.01%) 0.622 (3.16%)
liy 3.7 1.11 (1.37%) 0.825 (0.66%)
ulx 1.7 0.90 (2.86%) 0.651 (4.86%)
uly 2.6 1.07 (2.62%) 0.759 (1.98%)
llx 1.9 1.15 (2.16%) 0.657 (3.08%)
lly 3.7 2.31 (1.36%) 0.822 (0.71%)
ttx 2.9 2.17 (2.03%) 0.842 (1.07%)
tty 4.3 2.20 (1.80%) 0.881 (0.65%)
tbx 3.2 2.03 (1.80%) 0.839 (0.94%)
tby 3.2 1.84 (2.29%) 0.877 (0.74%)
tdx 3.3 1.91 (1.70%) 0.820 (0.95%)
tdy 2.8 1.92 (2.36%) 0.808 (1.32%)
vx 9.2 0.36 (0.63%) 0.849 (0.30%)
vy 3.8 0.34 (1.05%) 0.838 (0.49%)
average 1.44 (1.86%) 0.792 (1.49%)

Table 3: Cumulative results on the test set for speaker fsew0,
after smoothing. The “cutoff” column shows the cutoff fre-
quency of the “best” low-pass filter in Hz. The numbers in
the parentheses are the relative improvements of the results
over the ones presented in Table 1.

γ and the size of the input context window) were chosen so
as to optimize performance on the fourteen EMA channels in
total. It might be the case (and more recent experiments indi-
cate) that a channel-specific optimization of these parameters
improves channel-specific results. Nonetheless, such a be-
havior should be thoroughly tested (perhaps using data from
more speakers) to check whether it is systematic or not.

Another point (which might contardict the previous one)
is that we believe that future attempts on the problem should
take more explicitly into account its temporal and spatial
structure. What we (and to our knowledge, the other methods
presented here) do is treat the problem as a series of relatively
independent static mapping problems. The concatenation of
input vectors or the a posteriori introduction of dynamical
constraints does not, to our belief, fully account for temporal
structure. The spatial inter-correllations among articulatroy
trajectories are not exploited. Learning problems involving
structured spaces is the subject of many recent studies in the
machine learning field (e.g. [16]).

Yet, the problem stated as: “How can a set of inter-
correlated time-series be predicted from another set of (inter-
correlated) time-series?” is open. A definitive answer to it
may prove beneficial not only for the speech inversion field
but also to scientific areas extending far beyond speech pro-
cessing.
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J. Schrader, and B. Conrad. Electromagnetic articulog-

raphy: Use of alternating magnetic fields for tracking
movements of multiple points inside and outside the vo-
cal tract. Brain and Language, 31:26–35, 1987.

[3] A. Smola and B. Schölkopf. A tutorial on support vec-
tor regression. Statistics and Computing, 14(3):199–
222, August 2004.

[4] S. V. Dusan. Statistical Estimation of Articulatory Tra-
jectories from the Speech Signal Using Dynamical and
Phonological Constraints. PhD thesis, University of
Waterloo, Ontario, Canada, 2000.

[5] K. Richmond, S. King, and P. Taylor. Modeling the
uncertainty in recovering articulation from acoustics.
Computer Speech and Language, 17:153–172, 2003.

[6] Korin Richmond. Estimating Articulatory Parameters
from the Speech Signal. PhD thesis, The Center for
Speech Technology Research, Edinburgh, UK, 2002.

[7] T. Toda, A. W. Black, and K. Tokuda. Acoustic-to-
articulatory mapping with gaussian mixture model. In
INTERSPEECH 2004 - ICSLP, 8th International Con-
ference on Spoken Language Processing, Jeju Island,
Korea, 2004.

[8] K. Richmond. A trajectory mixture density network
for the acoustic-articulatory inversion mapping. In IN-
TERSPEECH 2006 - ICSLP, 9th International Con-
ference on Spoken Language Processing, Pittsburgh,
USA, 2006.

[9] S. Ouni and Y. Laprie. Modeling the articulatory
space using a hypercube codebook for acoustic-to-
articulatory inversion. Journal of the Acoustical Society
of America, 118(1):444–460, July 2005.

[10] B. Schölkopf and A. J. Smola. Learning with Ker-
nels: Support Vector Machines, Regularization, Opti-
mization, and Beyond. MIT Press, December 2001.

[11] A. A. Wrench and W. J. Hardcastle. A multichannel
articulatory database and its application for automatic
speech recognition. In 5th Seminar on Speech Produc-
tion: Models and Data, pages 305–308, Kloster Seeon,
Bavaria, 2000.

[12] H. Hermansky. Perceptual linear predictive (PLP) anal-
ysis of speech. Journal of the Acoustical Society of
America, 87(4):1738–1752, April 1990.

[13] S. Young, D. Ollason, V. Valtchev, and P. Woodland.
The HTK Book (for HTK Version 3.3). Cambridge Uni-
versity Engineering Department, 2005.

[14] P. Woodland, M. Gales, D. Pye, and S. Young. Broad-
cast news transcription using htk. In ICASSP ’97: Pro-
ceedings of the 1997 IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP
’97)-Volume 2, page 719, Washington, DC, USA, 1997.
IEEE Computer Society.

[15] C.-C. Chang and C.-J. Lin. LIBSVM: a li-
brary for support vector machines, 2001. Soft-
ware available at http://www.csie.ntu.edu.
tw/˜cjlin/libsvm.

[16] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten
Joachims, and Yasemin Altun. Support vector ma-
chine learning for interdependent and structured output
spaces. In ICML, 2004.


