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Abstract

Electropalatography is a well established technique for recording information on the patterns of contact between the
tongue and the hard palate during speech, leading to a stream of binary vectors representing contacts or non-contacts
between the tongue and certain positions on the hard palate. A data-driven approach to mapping the speech signal onto
electropalatographic information is presented. Principal component analysis is used to model the spatial structure of the
electropalatographic data and support vector regression is used to map acoustic parameters onto projections of the
electropalatographic data on the principal components.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Electropalatography (EPG) (Gibbon and Nicolaidis, 1999) is a widely used technique for recording and
analyzing one aspect of tongue activity, namely its contact with the hard palate during continuous speech.
It is well established as a relatively non-invasive, conceptually simple and easy-to-use tool for the investigation
of lingual activity in both normal and pathological speech. An essential component of EPG is a custom-made
artificial palate, which is molded to fit as unobtrusively as possible against a speaker’s hard palate. Embedded
in it are a number of electrodes: 32,62,64,96 or 128, depending on the implementation (Hiiemae and Palmer,
2003). When contact occurs between the tongue surface and any of the electrodes, a signal is conducted to an
external processing unit and recorded. Typically, the sampling rate of such a system is 100–200 Hz. Thus, for a
given utterance, the sequence of raw EPG data consists of a stream of binary vectors with both spatial and
temporal structure. Usually a value of 1 represents the event that the tongue contacts a given electrode at a
given point in time and a 0 value that it does not. (However, in this paper, such a non-contact will be
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represented by a value of �1.) Observation of both temporal and spatial details of contact across the entire
palatal region can be very helpful to identify many phonetically relevant details of lingual activity. EPG
has been successfully used to study a number of phenomena in phonetic descriptive work, in studies of lingual
coarticulation and in the diagnosis and treatment of a variety of speech disorders (Gibbon, 2005).

The freely available MOCHA database (Wrench and Hardcastle, 2000) is a source of articulatory data
recorded in parallel with the corresponding acoustic information. It includes four data streams recorded con-
currently: the acoustic waveform, sampled at 16 kHz with 16 bit precision, laryngograph, electromagnetic
articulograph and electropalatograph data. For the latter, the reading EPG (Jones and Hardcastle, 1995) sys-
tem is used, which provides tongue-palate contact data at 62 normalized positions on the hard palate, defined
by landmarks on the maxilla. These are recorded at 200 Hz. Speakers read a set of 460 British TIMIT-style
(Garofolo et al., 1993) sentences, which are designed to provide phonetically diverse material and capture
the connected speech processes in English with good coverage. All waveforms are labeled at the phonemic
level; however, these labels are the result of a forced-alignment process and considered prone to errors
(according to the documentation of the database, 6% of the labels are wrong). The original plan was that
the database would feature up to 40 speakers with a variety of regional accents. Up to the time of writing this
paper data from ten speakers are available. Data from three of these speakers are also fully corrected.

This paper presents a machine learning-based method for estimating electropalatographic information
from the acoustic waveform using data from the MOCHA database. The method is data-driven, in the sense
that no a priori expert speech production knowledge is employed. At testing, the trained system does not need
to explicitly know the phonetic identity of the sound it processes in order to estimate EPG patterns from the
corresponding acoustic information.

The method involves three steps. Firstly, the application of principal component analysis to the EPG data.
Secondly, mapping acoustic parameters to the projections of the EPG data on the principal components using
support vector regression. Thirdly, the production of estimates of the EPG sequences from the estimates of the
projections on the principal components.

The task of mapping the speech signal to EPG patterns, may be considered as a special case of the acoustic-
to-articulatory mapping problem, or speech inversion (Schroeter and Sondhi, 1994), which refers to estimating
articulatory parameters based on the corresponding acoustic information, with a possible addition of comple-
mentary cues like measures taken by video captures of the speaker’s face (Engwall, 2005). The problem has
received considerable attention in the speech community, having numerous possible applications in the areas
of speech coding, speech recognition, speech therapy, language acquisition and second language learning
(Richmond et al., 2003; Ouni and Laprie, 2005), as well as increasing understanding of the relations between
speech production and acoustics from a phonetic viewpoint (Mokhtari et al., 2007). What we imply is that a
successful mapping from acoustics to EPG information may have all the applications attributed to the general
acoustic-to-articulatory mapping. For example, a successful acoustic-to-EPG mapping might allow the reme-
diation of numerous speech disorders by visual feedbacks of tongue activity (Gibbon, 2005) in cases where the
cost of an artificial palate is prohibitive. Another application might be the analysis of the tongue-palate con-
tact patterns in the recorded speech of people who are unable or unwilling to wear an artificial palate.

The rest of the paper is organized as follows. Firstly, we discuss principal component analysis and support
vector regression, and describe the processing steps applied to our data. We then elaborate on our method and
present experimental results, concluding with a series of observations on the results and their implications.

2. Principal component analysis

Principal component analysis (PCA) (Jolliffe, 1986) is a well-known statistical method which projects some
data onto a new set of axes. These axes are the directions in the data space where the data variation is max-
imum and they are called the principal components. The principal components are ordered by significance.
Dimensionality reduction of the data may be achieved by eliminating the least significant principal compo-
nents. Practically, PCA is accomplished by applying eigenvalue analysis on the covariance matrix of the data.
The eigenvectors are then the principal components.

Even though PCA is not an explicitly binary method, it has been used to model the spatial structure of EPG
data in the past (Nguyen et al., 1996; Carreira-Perpiñán and Renals, 1998). In both the cases, PCA modeling is



348 A. Toutios, K. Margaritis / Computer Speech and Language 22 (2008) 346–359
considered successful; however, not the optimal method among the ones studied. In particular, Nguyen et al.
(1996) come to propose an autoassociative neural network-based dimensionality reduction scheme and
Carreira-Perpiñán and Renals (1998) the Generative Topographic Mapping. Regarding the number of prin-
cipal components used to model the data, Nguyen et al. (1996) present results for eight principal components
and Carreira-Perpiñán and Renals (1998) depict nine principal components. Nevertheless, the actual intrinsic
dimensionality of the EPG data is a matter under investigation, with a dimension of 5–10 usually suggested
(Carreira-Perpiñán and Renals, 1998).

PCA has several useful properties including computational simplicity, the additivity of the principal com-
ponents, their straightforward visualization and the ease of resynthesizing the original EPG patterns from the
corresponding projections. These constitute the main reason for choosing to utilize PCA for our purposes,
among all other possible spatial modeling schemes.

3. Support vector regression

Support vector regression (SVR) (Smola and Schölkhopf, 2004) is a supervised regression learning method
that has been shown to produce state-of-the-art results for several regression problems; including a study of
ours on mapping the speech signal onto electromagnetic articulograph information (Toutios, 2006). Being
non-linear, it is generally accepted as a very powerful alternative to neural networks and other regression algo-
rithms. There are several instances of the method, the original one being the e-SVR algorithm (Vapnik, 1995).

Given n training vectors xi and real-valued corresponding outputs yi 2 R, one wants to find an estimate for
the function y = f(x). According to e-SVR, this estimate is
f ðxÞ ¼
Xn

i¼1

ða�i � aiÞkðxi; xÞ þ b; ð1Þ
where the coefficients (Lagrange multipliers) ai and a�i are the solution for the quadratic optimization problem
maximize

W ða; a�Þ ¼ �e
Xn

i¼1

ða�i þ aiÞ þ
Xn

i¼1

ða�i � aiÞyi �
1

2

Xn

i;j¼1

ða�i � aiÞða�j � ajÞkðxixjÞ

subject to

0 6 ai; a�i 6 C; i ¼ 1; . . . ; n; and
Xn

i¼1

ða�i � aiÞ ¼ 0:

ð2Þ
where C > 0 and e > 0 are pre-selected constants.
The kernel function k(.,.) maps input data into a higher-dimensional space to account for non-linearities in

the function to be estimated (1). The usual choice for the kernel function is the Radial Basis Function (RBF)
kernel
kðx; yÞ ¼ exp �kx� yk2

r2

 !
; ð3Þ
with the parameter r being a pre-selected constant. Other choices for the kernel function include linear, poly-
nomial and hyperbolic tangent kernels.

In this paper, SVR training is carried out with the SVMTorch II software (Collobert and Bengio, 2001).
The RBF kernel is used throughout. The parameters, C, e and the kernel parameter r, are estimated from
the training dataset using the following heuristics, which are loosely based on Cherkassky and Ma (2004),
Weston et al. (2003) and our own experience. For the parameter C, we use
C ¼ maxðj �y þ 3ry j; j �y � 3ry jÞ; ð4Þ
where �y and ry are the mean and the standard deviation of the output values of training data, respectively. For
the parameter e, we use
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e ¼ 3rn

ffiffiffiffiffiffiffiffi
ln n
n

r
; ð5Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
where n is the number of training examples, and rn is the median value of ðy � �yÞ2 across the training output
data. Finally, for the RBF kernel parameter r, we use
r ¼
Xd

j¼1

rxj ; ð6Þ
where rxj is the standard deviation of the jth element of the input data vectors across the training set.
4. Data processing

The MOCHA database includes 460 utterances spoken by the fsew0 speaker, a female with a Southern
English accent. The following processing steps are applied.

Firstly, based on the MOCHA label files, silent parts from the beginning and end of the utterances are omit-
ted. Secondly, the EPG data are undersampled from 200 Hz to 100 Hz. Next, using the HTK Toolkit (Young
et al., 2005), 12 MF-PLPs (Woodland et al., 1997) and log energy are extracted from the speech signal, using
16 ms windows with 10 ms shifts and 40 filterbanks. These acoustic parameters are centered around their mean
and scaled by their standard deviation. The result of this process is 124, 242 pairs of 62-dimensional EPG
vectors and 13-dimensional acoustic vectors.

From the 460 available utterances which are numbered and presented in the list provided at http://data.
cstr.ed.ac.uk/mocha/mocha-timit.txt, 92 (every 10th utterance beginning with the 2nd and every 10th one
beginning with the 6th, 24,388 acoustic-EPG pairs) are reserved for testing. The rest (99,904 acoustic-EPG
pairs) constitute the training dataset Fig. 1.
5. Application of PCA on EPG data

Principal component analysis is applied on the EPG data of the training dataset. Fig. 2a is the scree plot of
this analysis, that is, a plot of the eigenvalues versus the order of the associated principal component (up to the
62nd), as an indication of the proportion of the variance of the EPG data explained by each principal
component.

At the PCA reconstruction phase, calculated EPG patterns are converted into binary vectors by considering
the signum of their 62 elements, which are originally continuous. Then a reconstruction error index is defined
by computing the number of electrodes for which the reconstructed value is wrong – that is, a positive
(contact) instead of a negative (non-contact) or vice-versa – in each reconstructed EPG vector. We measure
the mean reconstruction error when the EPG data are reconstructed from the projections on the L

(1 6 L 6 62), the most significant principal components. The mean reconstruction error on the test dataset
z z z z z z z z z z i i i i i

i i i i i n n n n n n t t t t

Part of typical EPG sequence. The shape of the figures (EPG vectors or electropalatograms) follows that of the palate, the alveolar
ing at the top and the velar part at the bottom. Black squares indicate a contact between the tongue and the palate. This is from the
ce ‘‘The hallway opens into a huge chamber”, EPG sequence corresponding to the part in boldface. The speaker is fsew0 from the
A database. Corresponding MOCHA labels are shown.

http://data.cstr.ed.ac.uk/mocha/mocha-timit.txt
http://data.cstr.ed.ac.uk/mocha/mocha-timit.txt
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Fig. 2. (a) Scree plot of principal component analysis of EPG data; and (b) reconstruction error on the test data when the projections on
the L most significant principal components are used, calculated as mean number of ‘‘misclassified” EPG elements.
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is shown in Fig. 2b. We note that the corresponding curve (not shown) for the training dataset is almost
identical.

For the rest of this paper we will regard the projections on the first nine principal components, which lead
to adequately small reconstruction error, and in accordance with the previously mentioned works on latent
modeling of EPG data (we will further comment on this choice later). Fig. 3 shows these principal compo-
nents. Fig. 4 provides indications of the distributions of the values of the projections of the EPG data on
the first eight principal components, according to the different phonemic labels as labeled in the MOCHA
database. The correspondence of these labels to IPA symbols is shown in Table 1. Fig. 5 shows rough sche-
matics of the ‘‘mean” EPG patterns across the test set for each phonemic label.

Examination of Fig. 4 may partly reveal the systematic features captured by the principal components. For
example, the top left plot (PC1 vs. PC2) shows that alveolars (t, d, n, s, z), affricates (ch, jh) and postalveolars
(sh, zh) are quite distinguishable from the rest of the sounds, defining a sub-area of their own in the graph
characterized by small values on both these principal components. The dentals (th, dh) also seem to define
another particular sub-area, with larger values on 1st principal component. In the top-right plot (PC3 vs.
1(8.418) 2(4.084) 3(1.395) 4(1.166) 5(1.067)

6(0.674) 7(0.639) 8(0.537) 9(0.464)

Fig. 3. First nine principal components of the EPG data. Each value is represented by a square of size proportional to its absolute value
and color black or white whether it is positive or negative. Numbers in parentheses are the corresponding eigenvalues.
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Fig. 4. Dispersions of projections on principal components according to phonemic labels (test set). MOCHA labels are located at the
point of the mean value of the projection across instances of the labels.
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PC4), the velars (k, g, ng) are pointed out, mostly attributable to the 4th principal component. In the bottom-
left plot (PC5 vs. PC6) the affricates and postalveolars are adequately distinct from the rest of the sounds.
Considering vowels, Fig. 5 indicates a difference between close vowels (i, ii, iy, uu) and the rest of vowels, with
the former showing great degree of lateral contact. This difference may also be observed in Fig. 4, especially in
the PC1 vs. PC2 plot.

Regarding the efficiency in reconstructing EPG patterns from the principal components, Fig. 6 plots the
reconstruction error against the total number of contacts in each EPG pattern, again broken down by pho-
nemic label. The general rule of thumb is that the more contacts in a pattern, the bigger the error in recon-
structing it from the principal components. Or, phonemes exhibiting large total number of contacts are
most difficult to model by PCA.
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Fig. 5. ‘‘Mean” EPG patterns across MOCHA labels in the test set. An electrode is black when it is a contact for the majority of patterns
with the specific label.

Table 1
Phonemic labels in the MOCHA database and their corresponding IPA symbols

Front vowels a(�) e(e) i(I) ii(i+) iy(i)
Mid vowels @(E) @@(e) uh(V)
Back vowels aa(A) o(A) oo(O) u(u) uu(u)
Diphthongs ai(aI) ei(eI) eir(eE) i@(IE) oi(uI) ou(ou) ow(au)
Bilabial p(p) b(b) m(m)
Labiodental f(f) v(v)
Dental th(h) dh(ð)
Alveolar t(t) d(d) n(n) s(s) z(z)
Alveolar (affricates) ch(tS) jh(dZ)
Alveolar (approximants) l(l) r(¤)
Postalveolar sh(S) zh(Z)
Velar g(g) k(k) ng(N)
Glottal h(h)
Glides w(w) y(j)

Partly adapted from Frankel (2003).
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Fig. 6. PCA reconstruction error plotted against total number of contacts in EPG patterns and broken down by phonemic label. MOCHA
labels are located at the point of the mean value of number of total contacts and reconstruction error across instances of the labels.
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6. Estimating projections from acoustic parameters

While the principal components are constant throughout the dataset, the projections of the EPG data on
the principal components are functions of time. Our goal from this point on is to produce estimates of the
latter projections from the speech signal. To this end we use the e-SVR algorithm, as described, considering
the projections on one principal component at a time.

As other works on acoustic-to-articulatory mappings suggest (Richmond et al., 2003), the input vectors of
the regression algorithm should include acoustic information spanning over a relatively large context window.
A first question to answer is how large this window should be for our task. We train estimate regression func-
tions for the projections on the first nine principal using incremental sizes of context windows. We consider
only symmetric context windows, that is, the same number of context frames (from 0 up to 10) is incrementally
added before and after the acoustic frame exactly corresponding to the output value. For this experiment, only
a small fraction of the training dataset (roughly the first out of 10 examples in sequence) is actually used for
training. The estimated functions are tested against the whole test set. The normalized mean squared error is
measured
NMSE ¼ 1

ry

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm

i¼1

ðy 0i � yiÞ
2

s
; ð7Þ
where y and y
0
are actual and estimated projections, respectively, m is the number of test examples and ry is the

standard deviation of y.
The NMSE for the projections on the first nine principal components as a function of the number of

context frames added before and after the frame in question is shown in Fig. 7, as well as its mean across
the nine projections. The minimum mean value is achieved with seven frames added before and after. That
is, context windows that minimize NMSE consist of 15 acoustic frames (frame in question + 7 frames
before + 7 frames after) and span over roughly 161 ms of speech.

Using these context windows for constructing input vectors, one support vector estimation function for
each of the nine projections is trained on the complete training dataset. Fig. 8 shows the NMSE and the Pear-
son product-moment correlation between actual and estimated projections as functions of the corresponding
principal components. Especially for the 1st and 2nd component, the results are very good, demonstrating that
the corresponding projections are estimated quite efficiently from the speech signal. Results for components
3–5 might also be considered satisfactory, while estimation of projections on the principal components 6–9
seems relatively poor. Fig. 9 shows actual and estimated projections on the principal components for one
utterance from the test set, where fsew0 utters the phrase ‘‘The hallway opens into a huge chamber”. The
corresponding MOCHA labels are also included.
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7. From estimated projections to estimated EPG sequences

For the final phase of our method, the EPG patterns are reconstructed from the estimated projections on
the principal components. These estimated EPG patterns are again converted into binary vectors by consid-
ering the signum of their elements. We stress that these estimated patterns are essentially produced from
the acoustic parameters. An estimation error index is defined in the same manner as the previous reconstruc-
tion error index using this time the new estimated EPG vectors instead of the PCA reconstructed ones.
Fig. 10a presents this estimation error as a function of the number of projections on the principal components
used to estimate the EPG patterns. Beginning with a value of 22.75 using only the 1st component (see also
Table 2), the error decreases at 20.77 when the 2nd component is added, followed by a dramatic drop at
5.22 with the 3rd component. The error decreases a little more with the 4th component, slightly increases with
the 5th component, and then decreases until it reaches a plateau after the 7th component. In Fig. 10b, we plot
the mean difference in the EPG patterns derived using L components compared to those derived using L � 1
components. This shows that, in this setup, the inclusion of further principal components alters the estimated
EPG patterns more significantly than Fig. 10a suggests. Table 2 summarizes, in numerical form, the results
already presented in Fig. 2 (for the first nine principal components), Figs. 8 and 10.
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Fig. 9. Actual (solid lines) and estimated (dashed lines) projections on the first nine principal components when fsew0 is uttering the
phrase ‘‘The hallway opens into a huge chamber”. MOCHA labels are shown.
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Fig. 11 presents a detailed example of EPG pattern estimation. Again, fsew0 uters the phrase ‘‘The hallway
opens into a huge chamber”. Errors are highlighted by different grey levels according to the legend of the fig-
ure. We may identify three kinds of errors. Firstly, there are errors which lead to impossible articulatory con-
figurations. For example, in the l sound, 1st row, 7th pattern, the method outputs a pair of isolated contacted
EPG electrodes in the middle of the pattern. The same, with just one contacted electrode, happens in the h
sound, 4th row, 3rd pattern. These errors are clearly plain faults of the method used. Secondly, there are some
critical errors that alter the overall shape of the vocal tract. For example, in the h sound, 4th row, 4th pattern,
and the ch sound, 5th row, 4th and 5th pattern, the method estimates a full palatal vocal tract closure in lieu of
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Fig. 10. (a) Reconstruction error as a function of the number of principal components, calculated as mean number of ‘‘misclassified” EPG
elements; and (b) mean difference between estimations using L and L � 1 principal components.

Table 2
Numerical summary of the results presented in Fig. 2 (first nine components), Figs. 8 and 10

Principal components Eigenvalue Reconstruction error NMSE Correlation Estimation error Difference

1 8.42 22.34 0.42 0.91 22.75 –
2 4.08 19.72 0.54 0.85 20.77 13.04
3 1.39 4.12 0.71 0.72 5.22 20.62
4 1.17 3.21 0.74 0.68 4.66 1.78
5 1.07 3.36 0.74 0.68 4.77 1.62
6 0.67 3.20 0.88 0.55 4.67 1.10
7 0.64 2.83 0.84 0.59 4.45 0.99
8 0.54 2.80 0.89 0.51 4.45 0.59
9 0.46 2.67 0.84 0.58 4.44 0.69
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a relatively open tract. Finally, there are numerous non-critical errors, where the values of some EPG elements
are changed without affecting the overall shape of the vocal tract. A characteristic example is the z sound, 3rd
row, 3rd pattern, where two EPG elements mutually exchange values, without seriously affecting the overall
pattern.

Fig. 12 is analogous to Fig. 6, plotting this time the EPG estimation error against the total number of con-
tacts in each EPG pattern, broken down by phonemic label. Fig. 13 highlights the differences between real and
estimated mean EPG patterns across each phonemic label. Examination of these figures shows that EPG pat-
tern estimation is most difficult for phonemes presenting high levels of contact between the tongue and the
palate, especially the affricates ch, jh and the postalveolar sibilants sh, zh.

8. Discussion

This paper presented a method for estimated EPG patterns from the speech signal, employing PCA as an
intermediate step. Another method to estimate EPG information from the acoustic signal could be to consider
the activation of each EPG electrode as a distinct, binary classification problem, independent from the acti-
vation of the other electrodes. We pursued this approach in the past with moderate success and compared
it with an approach similar to the one presented in this paper, to conclude that the latter performed better
(Toutios and Margaritis, 2006).

We chose to work with nine principal components, based primarily on the suggestions of other authors.
The results indicate that other choices would also be reasonable. If the mean estimation error of the EPG data
was the absolute criterion, we could say, based in Fig. 10a, that four principal components are enough for the
task at hand, since the mean estimation error saturates from that point on. On the other hand, Fig. 10b
suggests that, at least up to the 9th component, the inclusion of further components in the setup changes,
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significantly enough, the produced estimated patterns. Perhaps, the inclusion of further components (probably
beyond the 9th) should be stopped when this metric of difference plotted in the specific figure saturates. Any-
way, the efficiency of EPG pattern estimation with our method is strictly limited by the efficiency of PCA
reconstruction.

We should stress that the experiments presented involved a single speaker. We cannot be absolutely sure,
what the implications would be if the experiments were repeated using data from more speakers. The use of
more speakers, employing several articulatory strategies, would probably lead to increased mean estimation
errors, when estimated EPG patterns are compared to the actual ones.

In several discussions with colleagues, it was suggested to us that the addition of visual cues on lip opening
and rounding to the input of our method would probably lead to improved results. We explored this proba-
bility in Toutios and Margaritis (2007) employing, however, a different method (a neural network) for estimat-
ing EPG patterns. We reported a 6.4% relative decrease in the EPG estimation error when lip opening
information is added to the acoustic input and a 7.3% relative decrease with the addition of both lip opening
and lip protrusion information.
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Beyond the estimation of the actual EPG sequences, we feel that an important finding of this paper is the
efficiency with which the projections of the EPG data on the first few principal components are estimated from
the speech signal. Having in mind several works that use articulatory features (that are possibly estimated
through speech inversion) in a speech recognition setup (Deng, 20060, we may assume that the projections
on the principal components could be used this way as well. This is suggested by the graphs in Fig. 4 which
show clear differences in the values of the projections on these principal components across different
phonemes.
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