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Abstract
This paper addresses talking head synthesis based on the con-
catenation of units comprising of both acoustic and visual in-
formation. Selection of appropriate diphone units to synthesize
a given text string is based on the minimization of a weighted
linear combination of four costs that reflect linguistic, acous-
tic, and visual considerations. We present initial work toward a
method to determine automatically the weights applied to each
cost, using a series of metrics that assess quantitatively the per-
formance of synthesis.
Index Terms: talking head, audiovisual speech synthesis, se-
lection, optimization

1. Introduction
Complementing synthesized speech acoustics with an anima-
tion of the speaker’s face offers to the listener improved intel-
ligibility in noisy environments, better comprehension of the
speech signal, and an increased feeling of positivity and con-
fidence [1, 2]. Possible applications of such talking heads in-
clude, among others, the development of virtual assistants, and
of language training systems for the hearing impaired [3].

The usual approach to audiovisual speech synthesis con-
siders the synchronization of two independent sources: synthe-
sized acoustic speech (or natural speech aligned with text) and
the face animation (for recent examples see [4, 5]). This ap-
proach may present perceptual incoherence, since it can be that
the auditory and visual information originate from different ut-
terances of the same spoken text [6]. We are carrying research
toward a system that overcomes this problem by using an alter-
native approach [7]: audiovisual synthesis is performed with its
acoustic and visible components simultaneously, by considering
a bimodal signal comprising of an acoustic and a visual channel.
The setup is similar to typical acoustic-only unit-selection syn-
thesis [8], using the diphone as the concatenation unit. However
in our case units include both acoustic and visual information.

Selection of appropriate units to synthesize a given text
string involves the minimization, through Viterbi search, of a
weighted linear combination of four costs that reflect linguistic,
acoustic, and visual considerations. The chosen weighting of
these costs affects the quality of the synthesized talking head.
In our previous work [7], as in other works that adopt similar
strategies to talking head synthesis (e.g. [6, 9]), the costs were
chosen manually.

In acoustic-only speech synthesis, automatic fine-tuning of
such weights is a difficult problem and still an active research
field [10, 11, 12] where proposed methods try to provide an ob-
jective metric of perceptual cues, to later minimize it over the
weights. In audiovisual synthesis, the problem is even more dif-
ficult since there is an additional modality (visual) of different
nature compared to acoustics.

Usually, proper evaluation of audiovisual synthesis is done
via perceptual experiments, but this is not suitable for automatic
fine-tuning of the parameters involved in synthesis. What is
needed to this end is to investigate objective, quantitative, met-
rics to assess the synthesis results. The lack of such means of as-
sessment partly explains the need for manual fine-tuning, which
is expensive, subjective, and error-prone.

In this paper we present our work toward such objective
evaluation and fine-tuning of parameters for talking head syn-
thesis. First, we briefly present our system and the main im-
provements compared to what we have presented previously [7].
These improvements are the introduction of a derivative visual
cost and the application of a special algorithm at the concatena-
tion step to improve the visual joins between diphones. We then
introduce a series of metrics to assess the quality of synthesis, in
both the acoustic and visual domains. Finally, we merge these
metrics into a single one and use a nonlinear optimization tech-
nique to minimize it, by adjusting the parameters involved in
synthesis, over a set of test utterances. Thus, we arrive at an op-
timized set of parameter values, which is considerably different
with respect to previous heuristic guesses of ours.

2. Acoustic-Visual Synthesis System
Our corpus consisted of the 3D positions of 252 markers painted
on the face of the speaker and the concurrently recorded speech
signal, for 319 medium-sized French sentences, covering about
25 minutes of speech, uttered by a native male speaker. The
positions of the markers were captured using a low-cost 3D fa-
cial data acquisition infrastructure [13], with a sampling rate of
188.27 Hz. Acoustics were recorded at 16 kHz with 16-bit pre-
cision. Visual data were sub-sampled to 100 Hz, for easier la-
belling and alignment with speech-derived acoustic parameters.
Principal component analysis was applied on the positions of
178 markers at the lower part of the face (jaw, lips, and cheeks)
and 12 principal components (PC) were retained. Thus, visual
information was reduced to a set of 12 trajectories for each utter-
ance. The corpus was phonetized, analyzed linguistically, and
partitioned into diphones. A database was then constructed, in-
cluding information on position, duration, acoustic, visual (PC
trajectories and derivatives) and linguistic parameters for each
diphone.

At execution time, a text to be synthesized is first automat-
ically phonetized and partitioned into diphones. For each di-
phone, all possible candidates from the database must have the
same phonemic label. A special algorithm is available to han-
dle cases when there are no instances of the same diphone in
the database. The selection among these candidates is operated
by resolution of the lattice of possibilities using the Viterbi al-
gorithm. The result of the selection is the path in the lattice of
candidates which minimizes a weighted linear combination of
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Figure 1: Illustration of the visual cost calculation. The purpose
is to minimize the distance d between the points Pi,1 and Pi,2

at the boundary of the two concatenated diphones.

four costs, i.e.

C = wtcTC + wjcJC + wvcV C + wdvcDV C (1)

where TC is the target cost, JC is the acoustic join cost, V C is
the visual join cost, andDV C is the derivative visual join cost.
TC is calculated on the basis of the linguistic analysis of the
target utterance and is a weighted summation of the difference
between the features of the candidate diphone and the features
of the target diphone [14]. JC is defined as the acoustic dis-
tance between the units to be concatenated, and is calculated
using acoustic features at the boundaries of the units to be con-
catenated: fundamental frequency; spectrum; energy; and dura-
tion. V C is calculated using the values of the PC trajectories at
the boundaries of the units to be concatenated, i.e.

V C =
12∑

i=1

wi (Pi,1 − Pi,2)
2 (2)

where Pi,1 and Pi,2 are the values of the projection on princi-
pal component i at the boundary between the two diphones (see
Fig. 1). The weightswi should reflect the relative importance of
the components, and we choose them to be proportional to the
eigenvalues of PCA analysis, in accordance with [15]. DV C
is calculated in the same manner as V C, only using the deriva-
tives of the PC trajectories instead of the trajectories themselves.
Derivatives were calculated using a five-point stencil approxi-
mation.

In the acoustic domain, the selected diphone sequence is
concatenated using a well-studied technique, where pitch val-
ues are used to improve the join of diphones. In the visual do-
main, we apply an adaptive local smoothing around joins which
present discontinuities. If the first (∆) or second (∆∆) deriva-
tives at a given sample of a synthesized visual trajectory lie
out of the range defined by ±3 standard deviations (measured
across the whole corpus) then this sample is judged as problem-
atic. We traverse a visual trajectory xi, and check ∆ and ∆∆
at each sample i. If one of them is out of the desired range, we
replace samples xi−k to xi+k by their 3-point averaged counter-
parts, using incremental values for k, until∆ and∆∆ at sample
i are within the desired range.

3. Metrics for Assessment
The values over a synthesized utterance of the costs involved in
Eq. (1) could be used as indicators of the quality of the synthe-
sis results. For instance a smaller JC value indicates a better
overall acoustic join. However, it would be problematic to use
these in our attempt to fine-tune the weights involved in Eq. (1)
for two reasons: first, using the costs in order to determine the
weights applied on the same costs, would essentially lead to a

recursive loop; second, our aim is to prevent some specific prob-
lems related to the quality of the synthesized utterances rather
than minimizing overall costs.

As exemplified in Fig. 1, for two selected consecutive di-
phones, there is a potential difference between the rightmost
value of the visual trajectory for the left diphone and the left-
most value for the right diphone. If this difference is large
enough, the face animation may be jerky. Processing at the
concatenation step alleviates such problems, however a general
rule of thumb for unit-selection synthesis is that the selection
step should work in such a way as to minimize the need for
processing at the concatenation step.

Though we use 12 principal components for synthesis,
problems with the first principal component are most important,
since this component accounts for more than 57% of the vari-
ance of the final animation; furthermore, a discontinuity prob-
lem in the first component is a good predictor of discontinuity
problems in the subsequent components. Given the results of
selection, we scan across all the selected diphones and count
the number of times the gap between boundaries of adjacent
diphones, with regard to the first component, exceeds half the
standard deviation of the component, as calculated throughout
our whole database. We emphasize the fact that this operation
takes place before concatenation. For later reference, let us call
this number visual metric.

In exactly the same manner, we introduce metrics regard-
ing the continuity of the first derivative of the visual trajectory
(dPi/dt) and of the fundamental frequency (F0). For the vi-
sual derivative, we count the number of times the gap between
boundaries of adjacent diphones exceeds half the standard de-
viation of the derivative (derivative visual metric). For funda-
mental frequency, we count the number of times the gap be-
tween boundaries of adjacent diphones exceeds 0.25 Barks (fun-
damental frequency metric).

Finally, we define a fourth metric to assess the correctness
of the rhythm structure of the synthesized utterance. For each
vowel in the utterance, we measure the ratio of its duration to
the sum of the durations of all vowels in the utterance. Then,
we measure the same ratios in recorded equivalents of the same
utterances. Thus, we define the rhythm structure metric as the
number of vowels for which the value of the ratio calculated
for the synthesized utterance is more than 150% of the value
of the ratio calculated for the recorded utterance. This measure
is quite different from the previous ones because it depends on
a pre-recorded test corpus. The goal of this measure is not to
obtain at the end the same rhythm structure but in fact to avoid
big inconsistencies in the structure of the synthesized sentence.

4. Optimization of Weights
In order to fine-tune the weights involved in Eq. (1) we used
a set of 20 short test sentences, recorded alongside the main
corpus already presented.

We constructed a grid of values for the weights involved in
Eq. (1). Since what is important for the Viterbi algorithm is not
the absolute values of the weights but the ratios between them,
we considered the weight wtc as fixed to the value of 1. The
weights wjc and wvc were given values at the range between 0
and 1 with a step of 0.1. The weight wdvc was given values at
the range between 0 and 0.2 with a step of 0.02. The choice of
this difference in ranges and steps reflects the fact that continu-
ity of the derivative of the visual trajectory is, in principle, less
important to the final result compared to the continuity of the
visual trajectory itself.
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Figure 2: (a) 2D contour graph of values of visual metric mea-
sured on the 20 test sentences, as a function of wvc and wjc

when wdvc is fixed to the value of 0.04. (b) 2D contour graph
of values of fundamental frequency metric measured on the 20
test sentences, as a function of wvc and wjc when wdvc is fixed
to 0.

We synthesized the 20 test sentences and calculated the
sums of the four metrics described in the previous section over
these sentences, for every combination of weights in the grid.
We plotted several contour graphs like the ones shown in Fig. 2.
Since it was not imaginable that the observed minimum values
of the four metrics could be achieved concurrently using a sin-
gle combination of weights, we identified a set of target values
that possibly could. These target values were slightly above the
minimum values. We then normalized the four metrics by the
target values and summed them up into a single merged metric.
This merged metric quantifies how much the metrics deviate
from the desired target values.

We used the Nelder-Mead algorithm [16], which is a well-
defined commonly used nonlinear optimization technique based
on the concept of a simplex, to minimize this merged met-
ric over the four weights. In order to this, we developed a
computational setup where the 20 test sentences were syn-
thesized in every iteration of the algorithm. The algorithm
gave us a minimum at the point {wtc, wjc, wvc, wdvc} =
{1, 0.943, 0.897, 0.046}. This was a considerably different set
than the set {1, 0.33, 3.33, 0} which we used previously [7].

Fig. 3 shows synthesis results using these two sets of
weights, for a single utterance from the test set. Though the
trajectories corresponding to the (a) old and (b) optimized sets
of weights look similar, it is important to notice that several
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Figure 3: First visual component (in z-scored units) for the test
sentence “Je ne veux pas que vous le changiez pour le moment.”
(a) Synthesized using non-optimized weights, without process-
ing at the visual joins. (b) Synthesized using optimized weights,
without processing at the visual joins. (c) Synthesized using
the optimized weights, after processing visual joins. Note the
corrected details marked with arrows. (d) Original recorded
trajectory. Horizontal axes denote time in seconds. The bound-
aries between diphones are marked. Dashed lines indicate that
the combination of the two diphones exists consecutively in the
corpus and is extracted “as is” from it, solid lines otherwise.
SAMPA labels for diphones are shown.

of the diphones selected are different, a fact that is also re-
flected on the corresponding acoustics. The application of vi-
sual join processing in (c) further removes some small problems
with the visual trajectories and produces a smoother animation.
The synthesized trajectories bear a significant resemblance to
the recorded trajectory for the same utterance, presented in (d).
To illustrate the final result of our talking head synthesis sys-
tem, Fig. 4 shows a series of faces corresponding to the tra-
jectory in Fig. 3(c). Preliminary informal listening and seeing
tasks gave the impression that the synthesized animations using
the optimized weights were slightly improved. Nevertheless,
perceptual tests need to be designed to provide an objective as-
sessment.

5. Concluding Remarks
In acoustic-only speech synthesis, the problem of automatic
fine-tuning of weights typically considers the relative weight-
ing between two costs: target cost and join cost. An important
step toward this goal is to link objective measurements with the
subjective perception of the synthesis result by human listeners.
It is a problem yet unsolved in a fully satisfactory way. Per-
haps as an indication of disappointment, it has been argued that
such attempts are unnecessary and there is no need to seek al-
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Figure 4: Sequence of images, derived from synthesized 3D facial information, corresponding to part of the trajectory in Fig. 3(c), i.e.
synthesized using the optimized weights, after processing visual joins. The words depicted are “pas que vous le”. For sake of clarity,
one image for every 20 ms is shown. Bars mark the boundaries between concatenated diphones (dashed when diphones are consecutive
in the corpus).

ternatives to manual fine-tuning of weights [17]. After all, the
complexity is such that manual fine-tuning is not prohibitively
expensive: all that needs to be determined is the ratio between
the target cost weight and the join cost weight.

But in a bimodal unit-selection audiovisual synthesis setup,
as in our case, the problem is much more complex. As seen in
Eq. (1) two more join costs, to ensure continuity and smooth-
ness in the visual domain, are added to the typical (acoustic)
join cost. Moreover, these new visual costs are each constructed
using 12 weights, introduced in Eq. (2), applied to the 12 prin-
cipal components of visual information. For the selection of the
latter set of weights, we resorted to a reasonable solution pro-
vided in the literature (weighting each component by its eigen-
value). In the work presented in this paper we targeted only the
weights of Eq. (1).

Though the four metrics we introduced reflect perceptual
considerations, we need more perceptual experiments to assess
their relative importance, and thus to determine the exact way
we should combine them into a single merged metric. Neverthe-
less, the experimental setup that we have developed can easily
allow the incorporation of different merged metrics.

Will the final synthesized face animations be considerably
improved after such an effort? Our first results indicate so, and
we believe it is a question worth further investigation.
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